Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": January, 2000 WWW Edition

Jonathan E. Sisk's
Pick/BASIC: A Programmer's
Guide

WWW Edition January, 2000
Table of Contents

"= Thisbook is now available in Acrobat (PDF) format.

« Foreword by Ken Simms

« Preface

e INntroduction

Chapters:

1. Pick Terminology and
Concepts

2. The Related TCL Processes

3. Fundamental Pick/BASIC
Statements and Functions

4. The Concept of Loops

5. Calculations and the Principle
of Precedence

http://www.jes.com/pb/index.html (1 of 3) [12/18/2001 11:14:28 AM]

http://www.jes.com/gifs/adsnstuf/pb2bl.jpg

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": January, 2000 WWW Edition

6.

10.

11.

12.
13.
14.

15.

16.
17.
18.

String-Handling Intrinsic
Functions

Data Conversion and Print

Masking

Numeric Data Conversion and
Output Routing

The CASE Statement and
Controlling Switches

Looping with the FOR-NEXT
Statement

Extending the FOR-NEXT
Cconstruct

An Introduction to FILE I/O

Manipulating Dynamic Arrays

A Generalized Data Entry
Program

Formatting Reports and
Passing PROC Arguments

Using the EXECUTE Statement

External Subroutines

Additional PICK/BASIC
Concepts

http://www.jes.com/pb/index.html (2 of 3) [12/18/2001 11:14:28 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": January, 2000 WWW Edition

Appendices:

o Appendix B: Sample Data and
Dictionary for STAFF File

o Appendix D: PICK/BASIC Error
Messages

o Appendix E: PICK/BASIC
Interactive Debugger

Other Stuff:

o Glossary

o Review Quiz Answers

e Send mail to JES

Mirror Sites:

o Russia:
http://pua.ipu.rssi.ru/Docum/Jes/pb/index.html

Copyright © 1985-2002 Jonathan E. Sisk. It isagainst
the law to reproduce or distribute thiswork in any
manner or medium without written permission of the
author, c/o JES, Inc., P.O. Box 19274, Irvine, CA
92623.

http://www.jes.com/pb/index.html (3 of 3) [12/18/2001 11:14:28 AM]

mailto:jsisk@jes.com
http://pua.ipu.rssi.ru/Docum/Jes/pb/index.html
http://www.jes.com/

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": January, 2000 WWW Edition

Jonathan E. Sisk's
Pick/BASIC: A Programmer's
Guide

WWW Edition January, 2000
Table of Contents

FHL | W

« Foreword by Ken Simms

« Preface

e INntroduction

Chapters:

1. Pick Terminology and
Concepts

2. The Related TCL Processes

3. Fundamental Pick/BASIC
Statements and Functions

4. The Concept of Loops

5. Calculations and the Principle
of Precedence

http://www.jes.com/pb/index.html (1 of 4) [8/21/2000 10:48:50 PM]

http://www.jes.com/gifs/adsnstuf/pb2bl.jpg

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": January, 2000 WWW Edition

6. String-Handling Intrinsic
Functions

7. Data Conversion and Print

Masking

8. Numeric Data Conversion and
Output Routing

9. The CASE Statement and
Controlling Switches

10. Looping with the FOR-NEXT
Statement

11. Extending the FOR-NEXT
Cconstruct

12. An Introduction to FILE I/O

13. Manipulating Dynamic Arrays

14. A Generalized Data Entry
Program

15. Formatting Reports and
Passing PROC Arguments

16. Using the EXECUTE Statement

17. External Subroutines

18. Additional PICK/BASIC
Concepts

http://www.jes.com/pb/index.html (2 of 4) [8/21/2000 10:48:50 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": January, 2000 WWW Edition

Appendices:

o Appendix B: Sample Data and
Dictionary for STAFF File

o Appendix D: PICK/BASIC Error
Messages

o Appendix E: PICK/BASIC
Interactive Debugger

Other Stuff:

o Glossary

o Review Quiz Answers

e Send mail to JES

Mirror Sites:

o Russia:
http://pua.ipu.rssi.ru/Docum/Jes/pb/index.html

Notes From JES

« Jan 20, 2000: | get asked a lot
If this document is available as
a single file for download. The
answer, regrettably, is no, but
as a small consolation | have
gone through all of the
chapters and made some
changes to help facilitate your
saving local copies without
having to change any of the
HTML code. For example, all of

http://www.jes.com/pb/index.html (3 of 4) [8/21/2000 10:48:50 PM]

mailto:jsisk@jes.com
http://pua.ipu.rssi.ru/Docum/Jes/pb/index.html

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": January, 2000 WWW Edition

the references to graphics -
like the picture of the cover of
the book - now use
fully-qualified paths directly
back to our site, rather than
relative addresses to
directories which do not exist
on your system. So, you will
still have to save the chapters
one at atime on your system,
but at least they will look right
when you open them locally
through your browser.

Copyright © 1985-2000 Jonathan E. Sisk. It is against
the law to reproduce or distribute thiswork in any
manner or medium without written permission of the
author, c/o JES, Inc., P.O. Box 19274, Irvine, CA
92623, phone (949) 553-8200, fax (949) 553-9779,
email: jsisk@jes.com.

http://www.jes.com/pb/index.html (4 of 4) [8/21/2000 10:48:50 PM]

mailto:jsisk@jes.com
http://www.jes.com/
mailto:jsisk@jes.com

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Foreword

G Jonathan E. Sisk's
S Pick/BASIC: A Programmer's
Guide

FOREWORD by Ken Simms,
The Author of the Pick/BASIC
L anguage

The rumor that | wrote Pick/BASIC in order to be able to play Star Trek isnot true.
However, | did play alot of STAR TREK while developing the language. | needed to
test the product. Didn't [?

Since that time, | have seen alot of PICK/BASIC programs. Nearly al of the programs
did what they were supposed to do nearly al of the time. But some programs were not
very easy to understand. Some were so hard to understand that it was cheaper to throw them away and
start over than to change them.

But in all thistime (about 12 years) there have been no books about PICK/BASIC other than the system
manuals. Jon Sisk's new book not only shows how to write PICK/BASIC programs, but it also shows
how to write PICK/BASIC programs that are easy to understand. Jon's years of teaching PICK/BASIC
help to make this book an excellent learning tool. | recommend it to anyone who would like to learn
PICK/BASIC. | aso recommend it to anyone who already knows PICK/BASIC and would like to see
how good programming standards can be applied to the language.

KEN SIMMS
(Original Foreword from First Edition, Circa 1985)

Ken Smms passed away in November, 1988.

We miss you, Ken.

M Next chapter & Top

Copyright © 1985-2000 Jonathan E. Sisk. It is against the law to reproduce or distribute thiswork in any
manner or medium without written permission of the author, ¢/o JES, Inc., P.O. Box 19274, Irvine, CA
92623, phone (949) 553-8200, fax (949) 553-9779, email: [sisk@jes.com.

http://www.jes.com/pb/foreword.html [8/21/2000 10:48:53 PM]

http://www.jes.com/gifs/adsnstuf/pb2bl.jpg
mailto:jsisk@jes.com
http://www.jes.com/
mailto:jsisk@jes.com

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Preface

Jonathan E. Sisk's
Pick/BASIC: A Programmer's
Guide

WWW Edition January, 2000

Preface

The popularity of the Pick Operating System has continued to grow over the years. Recent estimates put
theinstalled Pick base at roughly 70,000 systems, ranging in size from desktop systems, like the IBM XT
and AT, al the way up to mainframe-class systems such as the IBM 4300 and 9370, with dozens of
micro and super-micro systemsin between.

For many years, most people who had machines that ran Pick didn't know that it was Pick they were
using. Pick went under "brand" names, like Ultimate and REALITY . Today the system is no longer being
sold in plain brown wrappers.

My experience has been that most of the Pick-based systemsin use today are managed by people who do
not have alot of experience with other operating systems. In many ways thisis an advantage the single
largest one of which isthat they do not have to be "retrained" into the Pick way of doing things.

Most companies do not have a"professiona” in-house staff to do programming and analysis work, and
thus have to do it themselves -- unless, of course, they rely on outside consultants or software vendorsto
perform technosurgery on their software. This book is for those of you who want to learn how to do it
yourselves. It's a'so aimed at those who don't want to do it themselves, but want to be able to talk
intelligently to those who do.

This book was developed from the course materials for my programming sessions in " The Pick System
Educational Series." Naturally, every little nuance about PICK/BASIC can't be covered in one book, but

this book is intended to provide a broad introductory overview about the powerful PICK/BASIC
language.

The method by which this book attempts to explain PICK/BASIC is through step-by-step tutorials. In the
first chapter, the basics of logging onto the system and creating your account are provided, along with a
very cursory overview of the Pick Editor. From there, basic programming principles and terminology are
discussed in Chapter 2. Chapter 3 takes the reader into the exciting world of programmingin
PICK/BASIC by providing a ready-made program which will be entered into the system, compiled, then
run. A detailed explanation of each instruction and principle follows immediately after the source listing.

http://www.jes.com/pb/preface.html (1 of 2) [8/21/2000 10:48:55 PM]

http://www.jes.com/gifs/adsnstuf/pb2bl.jpg
http://www.jes.com/training.html
http://www.jes.com/training.html

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Preface

The objective is to cover the instructions used most often in the language, in a practical, objective, and
logical order. The rest of the book follows this tutorial format, with each program building upon
principles introduced in preceding examples while introducing new topics along the way.

Asthefirst tutorial on the PICK/BASIC language, this book may serve as the pioneer by which future
similar attempts are measured. Pioneers, especially in the data processing community, are easily
identified: they are the ones with the arrows sticking out of their backs. | hope this book will provide the
reader with a broad enough introduction to be able to understand the principles and mechanics of the
PICK/BASIC language. Maybe it will even provide the courage necessary to start writing code from
scratch. But more important, it is intended to encourage its readers to get out there and discover, ponder,
and even maintain the existing code on their machines.

| welcome all comments and suggestions.
Jonathan E. Sisk

#previous chapter M Next chapter & Top

Copyright © 1985-2000 Jonathan E. Sisk. It is against the law to reproduce or distribute thiswork in any
manner or medium without written permission of the author, c/o JES, Inc., P.O. Box 19274, Irvine, CA
92623, phone (949) 553-8200, fax (949) 553-9779, email: [sisk@jes.com.

e W T

I'- = [o o - '..-
e e [vk
AR T L W

P.O. Box 19274, Irvine, CA 92623
Phone Fax (In Calif.) Fax Mailto URL
(949) 553-8200 ((949) 553-9779 ((800) 841-5902 |jsisk@jes.com |http://www.jes.com/

http://www.jes.com/pb/preface.html (2 of 2) [8/21/2000 10:48:55 PM]

mailto:jsisk@jes.com
http://www.jes.com/
mailto:jsisk@jes.com
mailto:jsisk@jes.com
http://www.jes.com/

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide"

Jonathan E. Sisk's
Pick/BASIC: A Programmer's
Guide

WWW Edition January, 2000

| ntroduction; The Ground Rules

In writing Pick/BASIC: A Progammer's Guide, certain ground rules had to be established. Without
setting boundaries, the job would never have been completed and no one could have benefited from the
information. The ground rules are listed here so you might understand the working concepts used to
create this textbook.

1. Thisisnot an encyclopediaor dictionary; it isintended to be atextbook. It will provide a genera
understanding of nearly every instruction in the language, and the principles behind putting them
to use.

2. Itisnot asimportant to identify which version of PICK/BASIC does what. The intention isto
thoroughly explain the standard instructions and features. Tying specific capabilities to specific
manufacturersis therefore given low priority.

3. Thistextbook does not replace your existing system documentation. Thereis still aneed for
standard system reference manuals.

4. Manufacturers change their versions of PICK/BASIC, eliminating bugs and adding features,
frequently without acknowledging the existence of any problems. For this reason, every known
bug, change, improvement or modification is not documented.

5. To further expand on point 1, there are actually several very good reasons that not every
instruction is covered. Some instructions, like "INPUT @" and "INPUTTRARP," don't work
consistently. Other instructions, like "RETURN TO statement.label” make programs too hard to
debug. Still others, like "SADD," are specific to one manufacturer, but are listed here for reference
purposes.

About PICK/BASIC

The Pick System comes equipped with avery powerful programming language: PICK/BASIC. It has
some remote similarities to standard Dartmouth BASIC (Beginners All-purpose Symbolic Instruction
Code), but far exceedsit in features and benefits.

The comparison of PICK/BASIC to the "standard" BASIC endsits similarities at the READ, WRITE,

http://www.jes.com/pb/pb_wp0.html (1 of 4) [8/21/2000 10:49:00 PM]

http://www.jes.com/gifs/adsnstuf/pb2bl.jpg

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide"

and PRINT statements. Outside of afew intrinsic functions, PICK/BASIC is significantly enhanced and
different in syntax. For example, statement labelsin PICK/BASIC are optiona. When they are used,
most versions of Pick still require numeric statement labels, while some now allow alphanumeric
statement labels.

The language is very well suited to dealing with strings of characters. Thisis particularly convenient in a
system where everything is stored as a string. A special set of intrinsic functions, like INSERT,
REPLACE, and DELETE, are provided to deal with the Pick "three-dimensional” data (item) structure.
This means that items (records) are composed of attributes (fields), which in turn are optionally
composed of "multi-values" (sub-fields), and finally, "sub-values' (sub-sub-fields?). Through
PICK/BASIC, you tell the computer what you want to do to an item, not how to doit. Thisiswhy itis
beneficial to have a general understanding about the Pick file and item structure before jumping into
updating files.

PICK/BASIC programs are primarily used to capture and validate data before storing it on disk. They
also can be used to format reports and menus, but generally these functions are done in ACCESS and
PROC, respectively.

The many other features of this unique language are covered throughout this text. The bottom lineis, if
you have used "standard" BASIC, you will find PICK/BASIC to be a much more elegant alternative. If
you have not used standard BASIC, congratulations; here's your chance to be exposed to a sophisticated,
flexible, and easy-to-learn programming language.

This book deals with "generic" PICK/BASIC code; that is, the programs in the tutorials are designed to
be used on any implementation of the Pick System, unless otherwise mentioned in the text.

About the Intended Reader

This book assumes that you already are familiar with the Pick Editor (EDIT) and the Pick file structure.
Some of the Editor commands are provided in the tutorials, but there are many features of the Editor
which are not discussed.

A background in programming in any language would be helpful, but it's not absolutely vital in order to
comprehend and make use of this book. For newcomers to programming, it isimportant to read the
section called "If Y ou Are New To Programming." Even if you have programmed before, this section is
suggested reading.

What to Expect

Using a"cookbook" approach, this book takes you through practical working examples of nearly every
command in the PICK/BASIC language. Some instructions, like the trigonometric functions, are not
called upon very frequently where the majority of Pick systems are actually used, such asin accounting
departments. Thus, these and other esoteric instructions are omitted.

After going through all of the program examples and quizzes, you will have the tools necessary to write
straightforward, maintainable programs. More importantly, you will be able to read the programs that
you already have. By read, | mean that you will be able to figure out the syntax of nearly every

http://www.jes.com/pb/pb_wp0.html (2 of 4) [8/21/2000 10:49:00 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide"

instruction in any PICK/BASIC program. Figuring out the logic is another matter altogether. Every
programmer has their own style of writing code. Coupling this with the fact that the Pick Systemis
technically very forgiving to even the sloppiest "spaghetti code," produces lots of different approaches to
problem solving.

Asyou explore existing application programs, you will probably find many cases where improvements
may be made from technigues obtained in this book. Don't hesitate put them in! Often a single change
won't provide an obvious increase in the performance of your computer; cumulatively, however, each
little piece adds up to a big improvement, like the old adage that "the whole is greater than the sum of its
parts." For thisreason, attention is paid to programming standards and conventions, in addition to
technical aspects. Current hardware is so fast that even inefficient programs run at blazing speed. This
compensates for bad code, but nothing compensates for code that can't be supported.

Representation Conventions

Certain typographic conventions are used throughout this book and have the same meaning each time
they are encountered.

Any text in all uppercase characters indicates the text is shown exactly asit is displayed by the computer
or exactly as you must enter it. Most implementations of the Pick System are generally sensitive to the
case of commands, instructions, statements, etc. If they are not entered in the right case, they won't work.

The <cr> symbol is used to represent a carriage return. This is sometimes referred to as the "Enter,"
"Newline," or "Line Feed" key. They all mean the same thing: press the Return key.

If You Are New to Programming

If you have never touched a computer before and expect to learn how to program from scratch using this
book, your task may be more than alittle difficult. This book is an introductory approach to the
PICK/BASIC language. Many principles of programming are covered in the course of the text, but to
keep this book from running about 1500 pages, some topics had to be skipped. For this reason, you may
want to explore your local library or bookstore for books that explain the general concepts of
programming. Another excellent source for thisinformation is your local community college or
university. Don't expect to find university courses on Pick just yet, but we're working on getting it in
there.

If you have areasonable "digital aptitude,”" however, this book may provide everything you need to
understand programming in PICK/BASIC.

Chapter 1 explains some terms that you will need to understand throughout this book. Study them
carefully. The glossary contains a much more complete list of Pick terminology.

#previous chapter M Next chapter & Top

Copyright © 1985-2000 Jonathan E. Sisk. It is against the law to reproduce or distribute this work in any
manner or medium without written permission of the author, c/o JES, Inc., P.O. Box 19274, Irvine, CA

http://www.jes.com/pb/pb_wp0.html (3 of 4) [8/21/2000 10:49:00 PM]

mailto:jsisk@jes.com
http://www.jes.com/

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide"

92623, phone (949) 553-8200, fax (949) 553-9779, email: [sisk@jes.com.

http://www.jes.com/pb/pb_wp0.html (4 of 4) [8/21/2000 10:49:00 PM]

mailto:jsisk@jes.com

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 1

Jonathan E. Sisk's
Pick/BASIC: A Programmer's
Guide

WWW Edition January, 2000

Chapter 1
" Pick Terminology and Concepts

E =
i EP i L e

The Pick System uses termsto define itself that are unique in the data processing world. Most of these terms are
defined the first time they are mentioned, and a glossary of these and other Pick termsis found among the
appendices.

ACCOUNTS AND FILES

Accounts are collections of logically related files, much like departments within a company. Each department has
its own set of file cabinets. The name of the account is entered at the "LOGON PLEASE:" message to gain
access to the system.

Files are collections of logically related items, much as afile cabinet contains file folders made up of similar
types of information. For example, one file cabinet may hold file folders which contain information about your
customers, while another cabinet may hold the folders for your suppliers. In the Pick System, the number of items
that may be put into afileisonly limited by the capacity of the disk.

PICK/BASIC programs, each of which is considered an item, are stored in afile commonly called BP. Note that
BP (short for "Basic Programs') is used as a convention only; as with all files, the filename is free-form.

The Pick System gains much of its elegance from the fact that it has only one file structure available. It is known
as arandom access file structure because records physically reside in the file in random order. The Pick System is
excellent for developing on-line, interactive application systems, since accessing data from filesis very fast and
independent of the size of thefile.

Anitemisacollection of logically related attributes or fields. (Other computer systemstypically call thisa
"record. ") For example, an item in the CUSTOMER-FILE might contain the name and address for a customer.
All the itemsin the same file are typically formatted in a similar manner. For example, the first attribute in each
item might be the customer's name, the second attribute might be the address, and so on.

The method by which Pick manages itemsis unique. Quite simply, any item in the Pick System is a collection, or
string, of characters. Pick uses the ASCII1 coding scheme for representing characters. This character set
represents 256 unique characters. Since the upper- and lowercase al phabet, numbers, punctuation, and control
characters barely use up the first 128 characters, there are plenty of unused characters available for other
purposes. Recognizing this fact, the Pick System uses the last four positions in the ASCII coding scheme,
numbered 252 through 255, as special characters to be used by the file system. (Computers generally begin

http://www.jes.com/pb/pb_wpl.html (1 of 12) [8/21/2000 10:49:15 PM]

http://www.jes.com/gifs/adsnstuf/pb2bl.jpg

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 1
counting at zero, which explains why the last four characters are 252 through 255, rather than 253 through 256.)

Since the Pick System treats each item as a string of characters, there is no concept of "type" of fields. Other
systems store data differently depending on the type of the data. The primary "types' of data on other systems are
numeric (binary, floating-point decimal, Comp-l, Comp-3, packed decimal, etc.) and character fields, used for
storing names and other string-type data.

Item-IDs

Each item must have its own unique identifier. Thisis caled itsid, (pronounced "eye-dee" in most of the world,
and "ahh-deee" in Texas) or item-M. Thisis often referred to by some as the "key," and by others as the "primary
key." Theitem-id may be virtually any combination of alphabetic, numeric and (most) punctuation characters.
Those characters that may not be used are: space () ", and any control character. Choosing the item-id for
itemsisnot atrivial process. How the item-id is structured has a significant effect on how the item-id "hashes" to
afile. A discussion of this selection processis presented in Chapter 13,

The Relationship of Files and Items

It might be helpful to consider the method by which Pick has implemented its file structures, and to see how
itemsfit into this scheme. Each item (‘record’) that is placed into afile must al'so have a unique item-id, or key.
Thisitem-id is then hashed, or internally massaged to calculate the storage location where the item isto be
placed. To retrieve an item, the unique item-id must be provided to the process, which then hashes it once again
to the same location. This requires that the item-id be logical or easily known, because if you don't know the
item-id, you can't get to an individual item. There are facilities provided to access the entire file, or even a
"selected” subset, if the item-id is not known.

It isimportant to emphasize that since there is only one file structure in the Pick System, it is used not only by
programmers, developers, and users, but by the operating system itself. Thisis both very powerful and vastly
different from other operating system environments that provide their users/programmers with multiple file
structures for the use of data and a different set of hidden file structures for use by the operating system or its
various utilities.

In the Pick System, all files and items are accessible. From the datafiles up to the system files, everything is
available to the user/programmer, who can greatly enhance the functionality of the system.

ATTRIBUTES, VALUES, AND SUB-VALUES

An attribute (which some people call a"field' ') isan object or a collection of logically related objects, like an
address or list of addresses, within an item. In the Pick System, these objects are typically referred to as values.

For example, if there were an item called 100" in afile called CUSTOMER-FILE, and you were to display it by
copying it to the terminal, it would appear as shown in Fig. 1-1. From visual inspection, it is apparent that the
item has five attributes. All of the attributes have only one value, with the exception of second, which has two
values, both of which are separated by a special "reserved” character called avalue mark. It isdisplayed as a
right-hand square bracket. Note that each value is similar in nature. That is, they are both addresses, but there
must be a way to separate them. That's where multi-values come into use. There may be as many separate values
as needed in an attribute, provided that each is separated by a value mark. This allows treatment of each value as
one entity.

http://www.jes.com/pb/pb_wpl.html (2 of 12) [8/21/2000 10:49:15 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 1

Values may, in turn, be broken up into multiple sub-values. The special reserved character to separate sub-values
is called, creatively enough, a sub-value mark. It is displayed as a backslash (\). There will be more about values
and sub-valuesin Chapter 13, which discusses array management.

Each line number (along the left side of the screen) corresponds to an attribute. WWhen writing programsin
PICK/BASIC, each attribute must contain alegal statement or expression (i.e., no blank lines).

>COPY CUSTOMER- FI LE 100 (T) <cr>

100 ltemid

00l HAPPY CAMPERS MOTOR LODGE Attribute 1
002 2600 MOOSE STREET] P. O BOX 1777 Attribute 2
003 EAST OVERSHCE Attribute 3
004 WN Attribute 4
005 80808 Attribute 5

Fig. 1-1. Sample display of an item.

WHY A VARIABLE-LENGTH ITEM STRUCTURE?

An attribute, or field, in aPick item is merely a string of characters within an item that also is a string of
characters. Pick distinguishes one attribute from another by attaching one of the special reserved characters
previously mentioned to the end of the attribute. Thisis the character numbered 254 from the ASCII coding
scheme. Not surprisingly, thisis called an attribute mark.

This means that when the Pick System accesses an attribute, it merely "scans' the item one character at atime
until it reaches an attribute mark. It doesn't matter how many characters occur between attribute marks, other than
the fact that most Pick systems impose a maximum size limitation of 32K (about 32,267) characters on any single
item. Consequently, items, attributes, values, and sub-values may be of variable length, which allows items to
expand and contract as changes are made.

Most other computer operating systems utilize a fixed-length field concept which requires that each field within a
record have indicated a specific length, along with a beginning and ending character position, to specify where
thefield isfound or stored in the record. The total of all of these fixed-length fields indicates the record size.

The classic problem with this scheme is the five-digit ZIP code. When the record was originally laid out, five
positions were provided to allow for the storage of a ZIP code. When the ZIP code expanded to nine characters,
all the fixed-length-field victims had areal problem. They had to resize their record structures, rewrite their
programs, and tell their bosses to wait.

This problem doesn't occur in the Pick System. With Pick, you simply change the programs to accept and display
nine positions, change the dictionary items used by ACCESS for reporting, and life goes on.

The concept of using delimiters to separate attributes (fields), values, and sub- values significantly simplifies the
problem of data management. All you tell the Pick System iswhat you want, not how to do it. It then scans
through the item, counting the delimiters along the way, until the requested location is found. Simple.

This scheme leads to a phenomenon commonly referred to as the three-dimensional item structure. Attributes
may contain multiple values, each of which is separated by a value mark. Values, in turn, may contain multiple
sub-values, each of which is separated by a sub-value mark. Figure 1-2 illustrates the logical structure of the Pick
System.

http://www.jes.com/pb/pb_wpl.html (3 of 12) [8/21/2000 10:49:15 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 1

Systens are made up of accounts.
Accounts are made up of files.
Files are nmade up of Itens.
Itens are nade up of attri butes.
Attributes are nmade up of val ues.
Val ues are made up of sub-val ues.

Fig. 1-2, Summary of the Pick data structure.

IF YOU HAVE WORKED ON OTHER SYSTEMS

Most systems which impose the fixed-length field and record structure require individual programsto be stored
in separate source code files, with each 80-character record representing a single line or statement of source code.

Since Pick does not impose this fixed-length mentality, source programsin the Pick System are stored
differently. Typically, asinglefileis created to contain multiple programs of a certain application such as
"AR.BP," to contain "Accounts Recelvable" programs. Each item in the file is a program. Each attribute (or field)
in the (program) item isasingle PICK/BASIC line of source code. Remember that Pick has only onefile
structure, which accommodates variable-length items, attributes, values, and sub-values. The only constraint is
that the total length of the program cannot exceed 32,257 characters, which is too much to place in one program

anyway.

Since each attribute (field) is of variable length, there is no concept of a continuation character used by other
systems when a given line of source code exceeds the space allocated within the 80-character constraint. Also,
there is no concept in the writing of PICK/BASIC source programs (unlike FORTRAN, for example) that the
statements must start in the 7th or 8th column position of the line and end in the 72nd or 73rd column.
PICK/BASIC source statements may begin in any column position.

The concept that multiple source programs (items) are stored in the same source code file affects how you
indicate to the various utilities the program that you want to edit, compile, and run. Thisis covered in Chapter 2,
but basically you have to tell the various utilities that the program isin a certain file and has a certain name (item
id). Thisis no different than the way Pick manipulatesitemsin other files: thereis only one file structure.

Experienced programmers, just beginning to understand and appreciate the Pick file and item structure, soon
realize that this environment easily provides the ability to write PICK/BASIC programs which can write other
PICK/BASIC programs. There are several excellent "code generators’ commercially available to the Pick
System.

By now you are realizing that the Pick operating system provides many powerful features that address many
problems plaguing other computer environments with the fixed- length record structures. The Pick System
provides avery powerful language called PICK/BASIC. It isamost unfortunate that it is called "BASIC,"
because of the association with earlier and simpler BASIC languages. Pick has more high-level loop control
constructs available than the ever-present COBOL language, plus an exceptional environment for tracing and
analyzing program "bugs."

Since Pick provides this unique file structure with variable-length items, many additional functions also are
provided to manipulate these structures of character strings. The concept that Pick retrieves afield without
knowing what the data represents (no data typing) means that the Pick system provides an ideal environment for
creating parameter- driven application systems. This provides the ability to write programs that read data files
which contain the parameters and instructions which instruct the programs how to function. Parameter-driven

http://www.jes.com/pb/pb_wpl.html (4 of 12) [8/21/2000 10:49:15 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 1

systems avoid the necessity to "hard code" the functions of a program into its source code, which then requires
recompilation if changes are needed. Such systems are typically more flexible and generic in application. Thisis
agreat aid for software developers.

Another distinction of the Pick System isthe way it stores time and date values. In the instances where a date
needs to be stored, it may be stored as a string, such as 07/04/1997, or you may utilize a function which converts
the date to an integer representing the number of days that have elapsed since the reference date of 12/31/1967.
This processis known as internal conversion. Dates before 12/31/1967 have a minus sign preceding the integer
number of days. For example, if you were to take the date, 12/31/1967, and convert it with the date conversion
function, the function yields the result O (zero). The string 1/3/1968, converted with the same function, yields the
result 3, and 12/29/1967 yields -2.

The advantages of thisinternal conversion process are many. First, it makesit extremely easy to perform
calculations on dates, since they are stored internally as integer numbers. Second, it optimizes disk storage, given
that datesin "internal format" require less room than their "external-format" equivalents. Third and finally, it
assistsin "sorting" dates, since it is easy to compare two integer numbers to determine which is greater. Extensive
functionality existsin Pick to utilize this format and to present dates in many different external formats. These are
discussed at length in Chapter 7.

The storage of time has asimilar internal conversion scheme. Hours and minutes are internally converted to an
integer number that represents the number of seconds that have elapsed since midnight.

This unusual world of Pick, where items (records) automatically expand and contract and no attempt is made to
"type" the data stored in fields means that an attribute in an item, which previously had been used to contain
customer address information, may be changed quite easily --and without breaking any rules -- to accommodate a
numeric value, such as the person's age.

TERMINOLOGY OF THE PICK/BASIC LANGUAGE

Now let's examine some standard programming concepts as they are implemented in Pick.

Statements

A statement is alist of words which comprise the detailed instructions from which the computer makes its
decisions and performsits duties. It normally consists of constants, variables, expressions, and/or the special
commands of the PICK/BASIC language. The PICK/BASIC language allows multiple statements to be put on
one physical line (attribute) provided that each statement is separated by a semicolon (;). Thefirst line of codein
Fig. 1-3illustrates what happens when this feature is abused.

PRI NT "ENTER NAME" ; |INPUT NAME;, |IF NAME = "" THEN STOP
(first statenent) (second) (third)
COUNTER = 0 ; * SET NUMBER OF | TEMS COUNTER TO ZERO

Fig. 1-3. Poor and acceptable uses of multiple statements on one source line.

Asarule of thumb, however, it is recommended to put only one statement per line. This makes programs more
visually appealing and, consequently, easier to maintain. The one exception to this rule is when a comment, or
remark, isincluded on a source line, as illustrated by the second line.

http://www.jes.com/pb/pb_wpl.html (5 of 12) [8/21/2000 10:49:15 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 1

Constants and Literals

A constant is a value which remains unchanged. Numeric constants do not have to be enclosed in quotes. For
example:

SECONDS. PER. HOUR = 3600

This replaces the current value of the variable SECONDS. PER.HOUR with the value 3600. "3600" is the
constant.

Literal constants are any strings enclosed in single or double quotes, or between backslashes (\). Any number of
characters, up to the maximum item size of 32K, may occur between the quotes or backslashes. For example:

REPORT. TI TLE = " PHYSI CAL | NVENTORY REPCRT"

where"PHY SICAL INVENTORY REPORT" isthe literal constant.
PRI NT. LI NE = ' NAME' " "PAY RATE

where'NAME ', '', and 'PAY RATE' arethelitera constants.

Other acceptable literal constants include:
PROWVPT ""

where the two double quotes represent the "null” string, meaning no value.
AGE = "0"

where "0" isthe literal constant. Purely numeric values do not have to be enclosed in quotes. The equivalent
statement is:

AGE = 0

Since no data typing occursin Pick, these two statements produce the same effect.

Variables

A variableis asymbol that represents and contains a data value. Asits name implies, the value, or contents, of a
variable may change during program execution. Some other systems call these "data names."

In many versions of BASIC, aswell asin languages such as Pascal, Ada, and PL/I, the "type" of avariable must
be declared prior to storing datain it. This means that the computer is told what type of datato expectin a
particular variable whether it will be a number or a combination of both letters and numbers. In other versions of
BASIC, variable names are typically single alphabetic characters for numeric variables, which are used in
arithmetic operations. "String" variable names are usually single alphabetic characters followed by a"$",
character. "String" variables contain al phabetic and/or punctuation characters and, on occasion, numbers.

Sel f explanatory form The "CGuess What" form
AG NG TOTAL = 0 AT = 0

| F EXI T. FLAG THEN STOP | F X THEN STOP
MATREAD CUSTOMER. ARRAY. . . MATREAD CA. ..

Fig. 1-4. Sample variable names.

http://www.jes.com/pb/pb_wpl.html (6 of 12) [8/21/2000 10:49:15 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 1

In PICK/BASIC, no concept of datatype exists. Variable names may be any length and therefore may be
descriptively named. Variable names may include al phabetic characters, periods and dollar signs, but must begin
with an alphabetic character. Figure 1- 4 illustrates samples of variable namesthat are all valid in PICK/BASIC.

Assignment

Variables may be assigned an initial value in a program. For example:
| TEM COUNTER = 0O

This assigns the value of O (zero) to the variable named ITEM.COUNTER. Thisis aso known as the process of
replacement. When a variable name appears on the left side of an equals sign, then the result of whatever appears
on theright side of the equals sign will be placed there. Typically, what appears on the right sideis afunction
which produces some result, or aliteral string enclosed in quotes, or even a number, asin the example.

This phenomenon is extremely important. There are many instances of using assignment throughout a program.
These are examined throughout the tutorials.

When the program assigns the value of O (zero) to the variable ITEM .COUNTER, the variable isinitialized.
Initializing means that the program is making the first reference to a variable. The result of not initializing a
variable before it is referenced results in an error message:

[BL0] VARI ABLE HAS NOT BEEN ASSI GNED A VALUE; ZERO USED!
It's agood ideato systematically assign initial valuesto variables.

The most important aspect of variables with regard to initializing is that they must be declared on the |eft side of
an equals sign before referring to them on the right side of an equals sign. Part A of Fig. 1-5 illustrates the correct
approach to initializing variables, while part B illustrates what happens when a variable is not initialized.
TOTAL.AMOUNT appears at line 14 for the first time in this program, and will generate the runtime error
message cited above.

003 TOTAL. AMOUNT = O

007 PRI NT "ENTER DOLLAR AMOUNT OF CHECK"

008 | NPUT CHECK. AMOUNT

014 TOTAL. AMOUNT = TOTAL. AMOUNT + CHECK. AMOUNT
*

*

014 TOTAL. AMOUNT = TOTAL. AMOUNT + CHECK. AMOUNT

Fig. 1-5. Example of A) properly initializing a variable, and B) failing to initialize.

Functions
Functions are operations on one or more variables, constants, or expressions (see nuclear tokens), which generate

asingle value. They are one of the kinds of elements that may be used in a PICK/BASIC expression. (The other
two are variables and constants). Functions perform relatively complicated operations, like removing all

http://www.jes.com/pb/pb_wpl.html (7 of 12) [8/21/2000 10:49:15 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 1

extraneous blanks from a string or converting dates to alternate formats. Functions ordinarily do not stand alone
in a statement. They are typically assigned to avariable or output with aPRINT statement. Here are afew of the
various functions available in PICK/BASIC:

PRI NT STR("!", 25)
CUSTOMER. | TEM 1) = TRl M RESPONSE)
CURRENT. TI ME = TI ME()

There are some rare occasions, however, where functions may effectively "stand alone." One such case iswhen a
function is passed to an external subroutine. Essentially, the rule is that functions may be used anywhere an
expression may be used.

Functions which are native to alanguage are called intrinsic functions. The intrinsic functions within
PICK/BASIC have one syntactical common denominator. They are always immediately followed by a set of
parentheses. Sometimes, depending on the type of function, there are one or more arguments or expressions
within these parentheses. In afew exceptional cases, there are no expressions within the parentheses. Table 1-1 is
apartia listing of PICK/BASIC intrinsic functions, showing required number of expressions within the
parentheses.

Table 1-1. Partial Listing of Functions Showing Arguments Required.

Functions which require no expressions.

(Note: According to one leading Pick expert, the TIME(), DATE(), and TIMEDATE() functions would be more
accurately called "global system variables." They just happen to have a syntax that makes them appear
confusingly similar to functions.)

CcoL1(), COL2(), TIME(), DATE(), TI MEDATE()

Functions which require one expression:

RND, I NT, NUM ASC |

Functions which require two expressions:

COUNT, STR, | CONV, OCONV

Functions which require three expressions:

FI ELD, | NDEX,

Functions which require four expressions:

EXTRACT, DELETE

Functions which require five expressions:

| NSERT, REPLACE

http://www.jes.com/pb/pb_wpl.html (8 of 12) [8/21/2000 10:49:15 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 1

Operators

Operators are characters, and sometimes words, which perform logical, arithmetic, relational, or string-modifying
operations. Operatorsinclude: + - / * <> < => = #: and afew others. Figure 1-6 illustrates some of the operators
availablein PICK/BASIC.

Operators are classified into three categories:

Arithmetic operators:
« + (addition)
o - (subtraction)
o /(division)
o * (multiplication)
« " (exponentiation)

Logical operators:
« =(equa to)
o > (greater than)
o < (lessthan)
« >=(greater than or equal to)
o <= (lessthan or equal to)
« # (not equal to) which may also be represented by (<> or ><)

String operators.
« : (concatenation, or "linking" strings together)
« the MATCHES relational operator, which detects "patterns' of characters.

In thefirst line of Fig. 1-6, ">" isalogica operator which means "greater than,” and "+" is an arithmetic operator
for addition. In the second line, "MATCHES" isarelational operator which checks patterns of characters, and ":"
is a string-modifying operator which means concatenate. Concatenate is another way of saying "link together."

Expressions and Arguments

An expression isavalid series of constants, variables, and functions, connected by operators. These are also
frequently referred to as arguments. The simplest expression is a single constant, variable or intrinsic function.
For example:

TOTAL = TOTAL + NEXT. AMOUNT

Thisis an arithmetic expression, one which adds the two (presumably assigned) variables together and stores the
result in avariable called TOTAL.

Expressions produce aresult, like a string of characters or a number. The result they produce determines the type
of expression. It isimportant to distinguish types of expressionsin attempting to explain the capabilities of
PICK/BASIC.

Some functions, for example, test for a"true" or "false” condition, which could be classified in this case as a
conditional expression. Asyou proceed through the tutorials, you will see avariety of expressions, such as

http://www.jes.com/pb/pb_wpl.html (9 of 12) [8/21/2000 10:49:15 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 1

"string” expressions and "numeric" expressions. Each new type of expression is explained as it is encountered.
For example:

ELI G BLE. FOR. RETI REMENT = (AGE >= 65}

Thisisaknown as arelational, logical or Boolean expression. Boolean expressions use the operators >, <, >=,
<=, <>, ><, and #. Any such expression evaluates to a numeric nonzero value (normally 1) if true, and a0 (zero
or null) if false. This statement assigns the value 1 (one) to the variable ELIGIBLE.FOR.RETIREMENT if the
variable AGE is greater than or equal to 65; otherwise, it isassigned a0 (zero) if not true.

| F CHECK. AMOUNT > 0 THEN CHECK. TOTAL = CHECK. TOTAL + CHECK. AMOUNT
| F PART. NUMBER MATCHES "1A4AN' THEN TI TLE = TITLE : " " : RESPONSE

Fig. 1-6. Examples of using operators.

The parentheses not only clarify, but aso determine the meaning of the statement. By the way, if you don't put
the parentheses around the expression, then it will not work on some versions of Pick.

Logical or Boolean expressions are used within conditional expressions like the IF- THEN and LOOP-UNTIL
constructs. They also have the property of being able to stand alone in an assignment statement.

This process of combining expressions continues in an ever-expanding combination of syntactical permutations
when parentheses and the logical operators OR and AND are included. Figure 1-7 illustrates the use of
parentheses and logical operators.

Functions and Nuclear Tokens

In theinitial definition of functions it was mentioned that functions always are followed immediately by a set of
parentheses, often containing one or more expressions. This is where the concept of "nuclear” or "atomic" tokens
needs to be discussed. Effectively, anuclear token is the smallest part of an expression. Functions may also
contain other expressions, which in turn may contain other functions. Thisis known as an infix notional
language. An example of thisis the statement:

PRI NT ABS(INT(X * Y))

In evaluating expressions, the computer starts from the innermost set of parentheses and works outward. This
examplehas"X * Y" at itscore. "X" and "Y" themselves are nuclear tokens, because they are variables which
already contain aresult by an assignment or a calculation. When X ismultiplied by Y, the result itself becomes
the nuclear token for the INT function. The INT function retrieves the integer portion (the numbers to the left of
the decimal point) of the number, which becomes the nuclear token for the ABS function, which retrieves the
absolute value of a numeric expression. The absolute value is always the positive value of anumeric variable;
hence, the ABS function strips off the leading minus sign if the result is a negative number.

ELI G BLE. FOR RETI REMENT = (AGE >= 65)

| F ELI G BLE. FOR RETI REMENT AND (YEARS. WORKED > 1 AND YEARS. WORKED <= 10 THEN
RETI REMENT. G FT = "TI MEX WATCH"

END

| F ELI G BLE. FOR. RETI REMENT AND (YEARS. WORKED > 10) THEN
RETI REMENT. A FT = "ROLEX WATCH"

END

http://www.jes.com/pb/pb_wpl.html (10 of 12) [8/21/2000 10:49:15 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 1
Fig. 1-7. Using parentheses and logical operators.

MAINTAINING STANDARDS AND CONVENTIONS

Once you know how to program in one language, you discover that most of the same principles apply in amost
all languages. programs are used to capture, manipulate, store and retrieve data on the computer. In current
technology, datais stored on "hard" or "fixed" disks. In afew years, hard disks may be obsolete, but the
principles of dealing with new mediawill remain the same. There will still be a need to have programs to
organize and administer data management.

In any programming language as flexible as PICK/BASIC, it isimportant to consider adopting "standards.” These
are "standard" methods of doing things. In programming textbooks and training classes, discussion of "standards"
often isleft until the end, after habits are already started. Introducing some of the concepts early on allows you to
take advantage of them from the start.

Many programming shops have lists of "programming standards.” These are the guidelines which programmers
follow in order to produce programs that everyone can understand and maintain. This text suggests many
standards, such as the variable naming conventions about to be discussed. Y ou may choose to implement some
and/or use some of your own.

Most versions of Pick are implemented using the ASCII coding scheme? Any variable may contain a number or a
character string. Since there are no "typed" variablesin the Pick System, it is suggested that you use some
variable naming conventions. For example, all variables that act as accumulators could have. TOTAL for the
suffix. The next few sectionsillustrate some of the conventions that are used throughout this text.

File Variables. A file variableis used to refer to aDATA or DICT fileand is always declared in an OPEN
statement. The suggested convention is that the variable name of the file is aways followed by the suffix
"FILE":

fil ename. FI LE

For example:

OPEN " CUSTOVER- FI LE" TO CUSTOVER. FI LE. . .

Item-I1D Variables. Anitem-id variable is avariable used to contain an item-id (what many people call a"key'").
It's a good ideato always follow the name of the variable with the literal, ".ID":

variable. 1D

For example:

| NPUT CUSTOMER. | D

Array Variables. An array variable is the resting place for an item read in through a READ or MATREAD
statement. The suggested convention is that the name of the array is always followed by the suffix, ".ITEM":
arraynane. | TEM or arraynanme. ARRAY

For example:
MATREAD CUSTOMER. | TEM FROM CUSTOMER. FI LE, CUSTOMER. | D. . .

Flag Variables. A flag variable typically contains one of two possible conditions: O (zero) or (numeric) non-zero
(normally 1). These end with the suffix, ".FLG":

vari abl e. FLG

http://www.jes.com/pb/pb_wpl.html (11 of 12) [8/21/2000 10:49:15 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 1

Note that you may use any conventions that you like to name your variables. It is recommended that you do use
some naming conventions, however, because many programmers have found that naming conventions make
programs less difficult to create and/or modify.

SUMMARY

Y ou have just completed the "crash course" on programming concepts. In it, you learned important principles and
terms like variables, expressions, and operators. These principles, with few exceptions, are generalized and apply
to virtually every programming language. From now on, the topics become much more specialized.

#previous chapter M Next chapter & Top

Copyright © 1985-2000 Jonathan E. Sisk. It is against the law to reproduce or distribute this work in any manner
or medium without written permission of the author, c/o JES, Inc., P.O. Box 19274, Irvine, CA 92623, phone
(949) 553-8200, fax (949) 553-9779, email: |sisk@jes.com.

http://www.jes.com/pb/pb_wpl.html (12 of 12) [8/21/2000 10:49:15 PM]

mailto:jsisk@jes.com
http://www.jes.com/
mailto:jsisk@jes.com

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 2

Jonathan E. SIsk's
Pick/BASIC: A Programmer's
Guide

WWW Edition January, 2000

Chapter 2
The Related TCL Processes

This chapter will explain the most important TCL (Termina Control Language), system-level procedures
you will have to deal with in order to begin programming in PICK/BASIC. These include using the
Editor, creating and maintaining files, and compiling and running your programs.

The PICK Editor

The Editor is the process through which programs are entered into the computer. It allows the creation,
update, and deletion of itemsin afile. A brief tutorial on the most essential Editor commands is provided
in this chapter.

In general, editorsfall into two categories. There are line editors, like the one about to be discussed, and
there are full-screen editors. A line editor is much more primitive in design. In line editors, you must
position the "line pointer” to the line (attribute) that you want to affect using a positioning command such
as"G" (goto line), "U" (move up), and "N" (move down). With afull-screen editor, you use the numeric
keypad or the arrow keysto position to the line that you want to alter.

If your system has JET, or one of its derivatives such as ULTIWORD or WORDMATE, then you
actually have afull-screen editor available. Invoking the JET editor is accomplished by using the
command "JET-EDIT" in place of the"ED" command. JET hasits own set of commands, many of which
are similar to the commands in the Pick line editor. If you decide to try the JET editor, pressthe "?" key
once it is activated to obtain alist of all of the available JET commands.

Activating The Editor

The following commands are essential for the use of the Editor throughout the course of this book:

ED or EDI'T

Either of these verbs may be used at the TCL prompt character (>) to activate the Editor. It aways has
the general form:

http://www.jes.com/pb/pb_wp2.html (1 of 12) [8/21/2000 10:49:18 PM]

http://www.jes.com/gifs/adsnstuf/pb2bl.jpg

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 2

>ED filenane itemid <cr>

to edit an individual item in afile, or
>ED filenane itemid itemid itemid. <cr>

to edit multiple itemsin afile, or
>ED fil enane * <cr>

to edit all theitemsin afile, or

>SELECT filenane {with selection criteria... } <cr >
n | TEMS SELECTED.

>ED fil enane <cr>

The ED command does not require the itemlist specification when following a SELECT or SSELECT
command.

Before entering the Editor, the requested filename is searched for the specified item-id. If theitem-id is
found, the line pointer isleft a the "top" of theitem. If it isnot found, then a"NEW ITEM" message
appears and the line pointer is positioned to the top of an otherwise empty item. Once the Editor has been
invoked, there are anumber of commands available; the next several sections describe those that are used
the most often.

Inserting New Lines

The Insert Editor command inserts one or more lines:
|

For an example, examine the terminal dialogue in Fig. 2-1. Note that while you are in "insert mode,"
each new line (attribute) is given aline number. To get out of insert mode, press the carriage return key
while the cursor is positioned immediately to the right of a"plus’ (+) sign. Thisreturns control to the
Editor command mode.

>ED filenane itemid
NEW | TEM
TOP

| <cr>
001+* this is line 1 <cr>
002+* this is |line 2 <cr>
003+<cr >

Fig. 2-1. Using the Insert command.

http://www.jes.com/pb/pb_wp2.html (2 of 12) [8/21/2000 10:49:18 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 2
Replacing Existing Lines
To replace aportion or all of an attribute, or arange of attributes, use the Replace command:
R

For example:
. R/ PRI NT/ CRT

replaces, on the current line, the first occurrence of the word "PRINT" with "CRT." The command
. RU999/ PRI NT/ CRT

replaces, in the next 999 lines, all occurrences of "PRINT" with "CRT."

Listing Items to the Screen

To list a specified number of lines on the screen, use the List command:
L

See Fig. 2-2 for an example of using the List command. The "EOI 011" message means that the "End Of
Item" has occurred at line 11. There are no more attributes or lines after this message.

The Shortcut Way to List Items. Most versions of Pick allow "prestored" commands in the Editor:
P

Normally, the only one that is defined automatically is PO (zero), and it issues an "L22" command. To
test this, enter the P command at the Editor command prompt (Fig. 2-3).

>ED filenane itemid <cr>
TOP

. L22<cr>

001 * thisis line 1

002 * thisis |line 2

003 * and so on...

*

*

011 * this is the last |ine...
EAQ 011

Fig. 2-2. Using the List command.

>ED filenane itemid <cr>
TOP

. P<cr>

001 * thisis line 1

002 * thisis line 2

http://www.jes.com/pb/pb_wp2.html (3 of 12) [8/21/2000 10:49:18 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 2

003 * and so on...

*

011 * this is the last line...
EAQ 011

Fig. 2-3. Using the Editor's prestored commands.

Deleting Lines

To delete one or more lines, use the Delete command:

DE
or
DEn

For example;

014 * this line needs to go away. ..

. DE<cr >

This does away with the current line, which in this caseisline 14. Or, you can use the DE command on
multiple lines:

014 * this line is going away. ..

. DE3<cr >

Thisdeletes line 14 and the next two lines, for atotal of threelines.

Moving the Line Pointer

To move the pointer to a particular line n, use the Goto command:

Gn
or
n

For example:

014 * this is line 14
. Gr<cr >
007 * this is line 7

The"G" isoptional. You may also smply enter the line number:

014 * this is line 14
. /<cr>

http://www.jes.com/pb/pb_wp2.html (4 of 12) [8/21/2000 10:49:19 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 2

007 * thisis line 7

Reviewing Changes: The F Command

To review changesin an item, use the Flip command:

F

Thiscommand "flips' Editor buffers. Get used to this. Y ou must use this command before you may
review any changes that have been made to an item:

014 * this is line 14
. F<cr>
TOP

Saving and Exiting
The File command is used to save (or resave) the item being entered or modified. Entering
FI

filesthe item, saving all changes made. For example:

014 * this is line 14
. Fl <cr>
"Ttemid filed.

Exiting without Saving Changes

To abort the edit of an item, use the Exit command. Entering
EX

exits the item without saving any changes. For example:
014 * this is line 14

. EX<cr >
"ITtemid exited.

Note: Unlike other systems, the Editor doesn't have the logic (in most versions of Pick) to warn you to
save the item before exiting, if any changes have been made. Be careful! Some implementations now ask
"ARE YOU SURE? (Y/N)" when using the EX (and FD) commands.

Deleting an Item

This command deletes the current item from the file:
FD

http://www.jes.com/pb/pb_wp2.html (5 of 12) [8/21/2000 10:49:19 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 2

Some versions of the Editor ask if you are "sure" you want to do this, most other versions don't. Caveat
emptier. A TCL command called "RECOV ER-FD" typically is available to recover a deleted item, but
there's a catch. The only time it worksisif you useit to try to recover the last item that was edited and
del eted.

GETTING INTO THE SYSTEM

Now we will walk through the process of getting into the system, creating your account and files, and
entering your programs.

Logging On

To begin asession, thefirst thing to do is"log on" to the system. Every Pick system has an account
called "SY SPROG." This very powerful account contains the commands used to do most of the system
administration functions, such as backups, restores, and maintenance.

Find aterminal, turn it on, and enter "SY SPROG" at the "Logon Please" message.
LOGON PLEASE: SYSPROG<cr >

If the next prompt is"PASSWORD?", then you must find out what the password is and enter it before
you may continue.

After abrief introductory message, which typically welcomes you to the system and tells you the current
system time and date, the computer displaysthe TCL (Terminal Control Language) prompt. On al
systems other than the Microdata (McDonnell Douglas) version of Pick, TCL isindicated by the ">"
prompt character. Microdata usesthe ":" symbol as its prompt character.

The activity generated by entering a command at the TCL prompt is referred to as a process. While the
Pick system is capable of handling multiple processes within an account, for safety's sake you are
encouraged to create your own account. Thiswill protect you from the other users of your system, and
vice versa.

Creating Your Own Account

Enter the following command at the TCL prompt character:
>CREATE- ACCOUNT<cr >

Before we continue, an explanatory disclaimer isrequired. The "CREATE-ACCOUNT" procedure varies
operationally among different implementations of Pick. This means that the questions asked of you by
the CREATE-ACCOUNT process may be in adifferent order or format, but essentially the same
information is needed by all the different versions.

ACCOUNT NAME?your. account . nanme<cr >

The name of your account is up to you. There are certain characters to avoid in your account name (or
‘any item-id, for that matter). These charactersinclude: spaces, arrow keys, single or double quotes,
slashes or backslashes, and never any control characters. Enter your account name and press Return. If

http://www.jes.com/pb/pb_wp2.html (6 of 12) [8/21/2000 10:49:19 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 2
you can't think of one, use"CLASS" as your account name.
L/ RET CODES?<cr >

This cryptic prompt is for the security (retrieval) codes for this account. Retrieval codes are better |eft
alone. Press Return.

L/ UPD CODES?<cr >

Thisisfor the entry of the update codes. Ignore this for now. Maybe forever. Press Return.
MOD, SEP?29, 1<cr>

This prompt alows you to specify the size (modulo) of the MD (Master Dictionary) file in the account
you are about to create. Normally, there is adefault value here of "29,1." If not, enter 29,1 and press
Return. This means that 29 contiguous frames will be set aside for the new MD. Thiswill most likely be
adequate for the next decade or two, or until you add lots of items to the MD, in which case you might
consider increasing the modulo. Choosing modulo is not trivial. Fortunately, that's why there is normally
adefault provided here.

PASSWORD?<cr >

An account password isup to you. If you useit, you will be asked for it each time you log on to your
account.

PRI VI LEGES?SYS2<cr >

The privilege level isimportant. Privilege level two (SY S2) alows access to anything that isin or
available to the account. That's what you want. A detailed explanation of privilege levelsisfound in
Exploring the Pick Operating System or the standard Pick System reference manuals.

Thisisnormally all the information that you need to enter. One or two more questions may be asked of
you. Do the best you can. It's not likely that you'll hurt anything. If the process completes normally,
control returnsto TCL. If not, consult your system manuals for troubleshooting.

Now it's timeto try your new account. Enter this:
>LOGTO your - new account

The LOGTO command allows you to leave the current account to access another. Control normally
returnsto TCL on the new account.

Creating Your Work Files

Before getting into the PICK/BASIC tutorial, some work files must be created. These will hold the data,
programs, and PRO Cs created during the tutorials. These files are established with the CREATE-FILE
command (see Fig. 24).

The CREATE-FILE command places a new file in the current account. The numbers following the
filename indicate the starting disk address, modulo, and separation for the dictionary and DATA levels of
the file, respectively. For the sake of brevity, the messages output from the following CREATE-FILE
commands have been |eft out.

http://www.jes.com/pb/pb_wp2.html (7 of 12) [8/21/2000 10:49:19 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 2

>CREATE-FI LE BP 11,1 29,1 <cr>
[417] FILE ' BP CREATED. BASE = fid. MOD
[417] FILE ' B CREATED. BASE = fid. MD

Fig. 2-4. An example of the CREATE-FILE command.

11. SEPAR
29. SEPAR

i1
[EEY

>CREATE- FI LE STAFF 7,1 11,1 <cr>
>CREATE- FI LE PROCS 1,1 11,1 <cr>
>CREATE- FI LE STATES 1,1 11,1 <cr>

The numbers following the filename specify the size of the file. These are called the modulo and
separation, and a detailed explanation of these is found in Exploring the Pick Operating System.

Preparing the Source File

Thefile in which PICK/BASIC programs reside needs to have a minor operation performed prior to
being able to compile programs. Thisis accomplished by using the Editor to change the "D-pointer" (the
file definition item) in the MD. Note: readers with Ultimate or McDonnell Douglas computer systems do
not need to do this!

Here are the stepsinvolved in preparing the BP file pointer:

>ED MD BP<cr >
TOP

.| <cr>

001 D

. R/ D/ DC<cr >
001 DC

. FI

' BP" FI LED.

The reason that this has to be done is that PICK/BASIC object code has to be handled differently than
"normal" dataitems. Source code refers to the human-readable list of instructions to perform asa
program. In the Pick System, source code resides in the DATA section of files. Object code is produced
by compiling source code into executable, machine-readable code. When a program is compiled, a
"pointer” item is placed in the dictionary of the source filel- This pointer item tells the system where the
object code will be found for execution. The name of the pointer item is the same as the source program
item. Incidentally, thisis exactly the same way that "lists" are handled with the SAVE-LIST command.

Note for Ultimate Users: Ultimate Corporation added a verb called UPDATE-FILE in release 122, when
"security" was implemented. Thiswas ostensibly to prevent users from damaging file definition items
(D-pointers). This change does not have to be done to source files on Ultimate systems, because any file
may contain source and/or object code. However, if you do fedl like doing thisto afile, you must use the
UPDATE-FILE verb; otherwise, you may damage or even destroy the file!

http://www.jes.com/pb/pb_wp2.html (8 of 12) [8/21/2000 10:49:19 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 2

>ED BP HELLO<cr >

NEW | TEM

TOP

.l <cr>

001+l F TIME() < 43200 THEN PRI NT "GOOD MORNI NG' <cr >
002+l F TI ME() >= 43200 THEN PRI NT " GOOD AFTERNOON'<cr >
003+END<cr >

004+<cr >

TOP

. Fl <cr>

' HELLO FI LED.

Fig. 2-5. Entering the HELL O program example.

The ED Command and HELLO Program

PICK/BASIC programs are typically entered through the standard Pick Editor, although any editor will
do. The Pick Editor is activated with the ED or EDIT command, Follow the instructionsin Fig. 2-5, and
enter the program shown. This program is now ready to be compiled, which must be done before it may
be run.

Note: The instructions in this program test the current system "time." In Chapter 1, the internal
representation of time was discussed. The important point to remember is that timeis stored internally as
the integer number of seconds past midnight: "43200" is 12:00 (noon), which is 12 (hours) multiplied by
3600 (seconds per hour).

The command line"ED BP HELL Q" entered at the TCL command prompt (>) instructs the Pick System
to activate the Editor. The program goesinto thefile called "BP," and itsitem-id is (or will be)
"HELLO."

PICK/BASIC Program Names (item-1Ds)

Since Pick storesindividual programs as items (records) in asingle program file and Pick does not limit
the length of the item-id2 (program name), you may use descriptive item-ids. One warning, however:
Never use a program name that has the same name as the source filein which it will reside! These are
some invalid program names.

>ED BP BP
or
>ED AR BP AR BP

Actually, the Pick system will let you get away with this--for the moment. It catches up with you later
when it destroys your file. The next section discusses the BASIC command, which is used to compile
source code into (executable) object code. Normally, when a compile takes place, a pointer to the object
code of the program is placed in the dictionary level of the source file, using the same item-id as the

http://www.jes.com/pb/pb_wp2.html (9 of 12) [8/21/2000 10:49:19 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 2

source item. If there is a program with the same name as the file, there is a potential danger of the object
pointer writing over the file pointer (the pointer to the DATA section of thefile). If this happens, all your
program source items will be lost! Some versions of Pick have built-in protective mechanisms to prevent
this problem.

COMPILING PROGRAMS: THE BASIC COMMAND

The BASIC command activates the PICK/BASIC compiler to translate the source code into object code.
The following examplesillustrate the BASIC command and some of its available options.

>BASI C BP HELLO<cr >

* k% %

'HELLO COWPI LED. 1 FRAMES USED.

Each * represents one source line successfully compiled into executable object code. A listing of the
program may be produced with the L option:

>BASI C BP HELLO (L) <cr>

001 | F TIME() < 43200 THEN PRI NT " GOOD MORNI NG
002 | F TIME() > 43200 THEN PRI NT " GOOD AFTERNOON'
003 END

' HELLO COWPI LED. 1 FRAMES USED.

The listing may be routed to a printer by including the P option:
>BASI C BP HELLO (LP)<cr>

Other options are available. These options are discussed in Appendix B.

ACTIVATING PROGRAMS: THE RUN AND
CATALOG COMMANDS

There are two ways to load and execute a compiled program. Thefirst is the use of the RUN verb:

>RUN BP HELLO<cr >
GOOD MORNI NG

(Unlessit's after 12:00 P.M., of course, in which case the program displays "GOOD AFTERNOON").

The second way isto CATALOG the program. This effectively makes a verb out of the program:

>CATALOG BP HELLO<cr >
' HELLO CATALOGED.

>HELLO<cCr >
GOOD MORNI NG

The rule with regard to cataloging programsis [hat the only programs which must be cataloged are those
which are considered "external" subroutines. While al of your programs do not have to be cataloged, it's
still agood idea. Note that external subroutines do not have to be cataloged on Ultimate systems, unless

http://www.jes.com/pb/pb_wp2.html (10 of 12) [8/21/2000 10:49:19 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 2

the subroutine resides in a different file from the program that callsiit.

From now on in the tutorials, compile all of your programs with the BASIC command, and then
CATALOG each program.

IF IT DIDN'T WORK

If you had any problem with the example called "HELLO," check the code using the Editor. It must be
entered exactly as it appearsin the text.

There are many possible reasons why programs don't compile. Here is a partial list of the most common
compilefailures:

1) Functions or instructions are misspelled. For example: PRONT "HELLO THERE"

2) Quotation marks, used in printing or assigning "Literals" are "unbalanced,” meaning, an odd number
exists. For example:

PRI NT "HELLO THERE

3) A GOTO or GOSUB statement which instructs the program to transfer control to a nonexistent
statement label. For example:

001 10 PRI NT "HELLCO'
002 G&Or0o 99
003 END

4) An IF-THEN or IF-THEN-EL SE statement isn't properly terminated with an END directive. Or,
worsg, is terminated with too many END directives. For example:

| F QTY. ON. HAND < REORDER. PO NT THEN
PRI NT " PRODUCT NEEDS TO BE RECRDERED! "
(HERE | S WHERE THE "END' STATEMENT SHOULD HAVE BEEN)

and the code goes on...

This has the unpleasant side effect of using the next END directive that the compiler encounters as the
terminator for the THEN initiator. Don't worry about this for now. The proper way to prevent this
problem is explained in Chapter 4, at the end of the narrative on Example 2.

Again, the programs in this book were tested and they worked on our test machines. The most important
thing to do isto compare your program listing line-by-line with the program listings from the book. Y ou
may find that you left out a character or two here and there. Don't feel bad if your programs don't always
compile the first time; it happens to everybody.

#previous chapter P Next chapter & Top

Copyright © 1985-2000 Jonathan E. Sisk. It is against the law to reproduce or distribute this work in any
manner or medium without written permission of the author, c/o JES, Inc., P.O. Box 19274, Irvine, CA

http://www.jes.com/pb/pb_wp2.html (11 of 12) [8/21/2000 10:49:19 PM]

mailto:jsisk@jes.com
http://www.jes.com/

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 2

92623, phone (949) 553-8200, fax (949) 553-9779, email: [sisk@jes.com.

http://www.jes.com/pb/pb_wp2.html (12 of 12) [8/21/2000 10:49:19 PM]

mailto:jsisk@jes.com

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 3

=G Jonathan E. Sisk's
28 Pick/BASIC: A Programmer's
Guide

Chapter 3
Fundamental PICK/BASIC
Statements and | nstructions

In the first program, many of the most fundamental principles of programming in PICK/BASIC are
discussed. Topics, statements, and functions covered include comments (remarks), PROMPT, PRINT,
INPUT, ABS, SQRT, ALPHA, NUM, END, IF-THEN, STOP, the null string, and LEN.

Enter the program in Fig. 3-1. An explanation of each instruction and technique follows. Note that most
of the spacesin the tutorial programs are put there for visual esthetics. The easier a program isto read,
the easier it isto maintain. Generally, spaces are optional, but there are some cases where they are not.
To be safe, enter the programs exactly as shown in the examples.

Fig. 3-1. Program Example 1.

>ED BP EX 001
TOP

.l <cr>

001 * EX 001

002 * BASIC TERM NAL |1/ O AND CONDI Tl ONAL EXPRESSI ONS
003 * mmidd/yy: date last nodified

004 * JES. author's initials

005 *

006 PROVPT ": "

007 PRI NT

008 *

009 * GET NAME

010 *

011 PRI NT "PLEASE ENTER YOUR NAME "
012 | NPUT NAME

013 PRINT

014 *

http://www.jes.com/pb/pb_wp3.html (1 of 13) [8/21/2000 10:49:23 PM]

http://www.jes.com/gifs/adsnstuf/pb2bl.jpg

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 3

015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
. Fl

* CHECK TO SEE | F THEY WANT TO STOP

*

| F NAME = "" OR NAME = "QUIT" THEN STOP
PRI NT "HELLO THERE " : NAME
PRI NT

*

* NOW GET STRING OR NUMBER
*
PRI NT "PLEASE ENTER A NUMBER OR A STRING OF LETTERS "
| NPUT RESPONSE
| F RESPONSE = "" OR RESPONSE = "QUI T" THEN STOP
PRI NT

*

* CHECK TO SEE | F STRING I S NUMERI C

*

| F NUM RESPONSE) THEN

PRINT "ABS VALUE OF " : RESPONSE : " IS " : ABS(RESPONSE)
PRINT "THE SQUARE IS " : RESPONSE * RESPONSE
PRI NT "THE SQUARE ROOT IS " : SQRT(RESPONSE)
STOP
END

*

* CHECK TO SEE | F STRING | S LETTERS ONLY
*
| F ALPHA(RESPONSE) THEN
PRINT "THE LENGTH OF " : RESPONSE : " IS " : LEN(RESPONSE)
STOP
END

*

* STRI NG MJUST CONTAI N NON- ALPHA AND NON- NUMERI C CHARACTERS

*
PRI NT " YOUR RESPONSE WAS NOT CONSI DERED NUMERI C OR ALPHABETI C
END

<cr>

Having entered the program, you are now ready to compile and run it. From now on, after entering each
program example, compile it with the BASIC verb, catalog it with the CATALOG verb, then type the
program name at the TCL prompt. Once again, here's an example:

>BASI C BP EX. 001<cr>

R I S S b S S S S b S b Sk b b S b S S S S b S S S S S

SUCCESSFUL COWPI LE! 1 FRAMES USED.

http://www.jes.com/pb/pb_wp3.html (2 of 13) [8/21/2000 10:49:23 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 3

>CATALOG BP EX. 001<cr>
' EX. 001" CATALOGED.

>EX. 001<cr >

Once the program loads and begins execution the following prompt appears on the screen:
PLEASE ENTER YOUR NAME:

A feature of this book is the detailed explanation of each new topic, or derivatives of earlier topics,
following the tutorial programs. The instruction, or group of statements and instructions, are repeated
where the narrative explains them. This technique minimizes the amount of backtracking that you will
have to do in order to examine the actual source instructions.

A notefor FORTRAN and COBOL programmers learning Pick. After aquick visual scan of the
program EX.001, or any other PICK/BASIC program, you will notice the total absence of data typing via
implicit assumptions by virtue of the first character in the data/field names (i.e., variables beginning with
| through N do not imply integer data). Nor do you find the ever-present "DATA DIVISION" that all
COBOL programs must contain. Remember that no data typing existsin the Pick System. A fieldisa
fieldisafield.

PROGRAM NAMES AND COMMENT SECTIONS

Thefirst five lines of Programming Example 1 consist of comments:

001 * EX 001

002 * BASIC TERM NAL |1/ O AND CONDI Tl ONAL EXPRESSI ONS
003 * mm dd/yy: date |ast nodified

004 * JES. author's initials

005 *

The Pick System is very flexible regarding the manner in which files and items are named. This usually
results in some rather diverse item-ids, particularly when naming programs. (A program is stored as an
item in the Pick System, so a program name is an item-id). For instance, a programmer may decide to
call aprogram "AP101," which may mean to him that thisis the program to enter and update the
accounts payable vendor file. Others go to the extreme of identifying the nature of the program in its
item-id. For instance, another programmer may call this same program
"ENTER.ACCOUNTS.PAYABLE.VENDOR."

Rather than trying to explain the entire program in the program name, it may be more useful to decide on
asimple item-id and explain the purpose of the program through remarks in the program. A comment
section is simply a standard set of remark statements that appears at the beginning of each program.
Remark statements have little effect on the execution of the program. This technique makes it easier to
work with program files.

http://www.jes.com/pb/pb_wp3.html (3 of 13) [8/21/2000 10:49:23 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 3

The Program Name

It's usually agood ideato use line 1 of each program to repeat the program name:

001 * EX 001

The reason for thisis that programs which are considered external subroutines require a SUBROUTINE
statement on thisline, so you can't dways count on this line being available. Note: Instead of placing a
remark on line one, it is permissible to put the word "PROGRAM," followed by the program name. This
little-known feature has been present for years in the Pick System.

The Program Description

Line two contains a single-line description of the program:

002 * BASIC TERM NAL |1/0 AND CONDI TI ONAL EXPRESSI ONS

Other examples could be "UPDATE THE ACCOUNTS PAYABLE VENDOR MASTER FILE," or
"EXTRACT CUSTOMER LISTS FROM DATABASE,"

Date Last Modified and Author's Initials

The "date last modified" isthe last date the program was changed:
003 * mm dd/yy: date last nodified

Follow a consistent date format, like mm-dd-yy, for example:
003 * 12/15/97: date last nodified

The comment on line 4 gives theinitials of the last person who changed the program, which is useful for
finding and persecuting the guilty party.

004 * JES: author's initials

"Spacer" Remark Lines

Line5isa"spacer remark line," which provides avisual separation of the comment section from the
actual executable code of the program:

005 *

Thistreatment is for visual aesthetics only and has no impact on the actual execution of the program; it
just makes the program look more organized for the benefit of the programmer. Once again, the easier
codeisto read, the easier it isto maintain.

http://www.jes.com/pb/pb_wp3.html (4 of 13) [8/21/2000 10:49:23 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 3

THE PROMPT STATEMENT

The PROMPT statement defines the character to display on the screen when an INPUT statement is
executed:

006 PROWPT ":"

Any expression which produces a single character may be used as the argument. When this statement is
left out of the program, the default prompt character is a question mark.

THE PRINT STATEMENT AND BLANK LINES

The PRINT statement is used to print data on the screen or printer. All by itself on aline, it smply skips
aline on the output device:

007 PRI NT

When followed by an expression, the current value of the expression is displayed or printed. Chapter 15,
Example 13, discusses routing output to the system printer with the PRINTER ON statement.

ANNOTATING THE PROGRAM

Comments, also culled remarks, have been discussed at severa points already throughout this book. The
block of commentsin lines 8-10 serves two purposes:

008 *
009 * GET NAME
010 *

First, it provides the visual spacing to make the source code more readabl e to those who must maintain it
and, second, the comment on line 9 reminds the programmer about the task at hand.

THE PRINCIPLE OF PSEUDOCODE

One important principle of program design is " pseudocode.” "Pseudocode” is the process of describing
program logic in plain English. Since aprogram is simply a set of instructions to perform atask, it is
often necessary to plan out the logic of the problem before starting to write the code that will accomplish
it. Thismay be done by organizing the logic in plain English statements, in the form of remarks. This
way, the logic may be debugged before even one line of executable source code is ever written.

For example, if you wanted to teach arobot how to "make toast,” you have to tell it the steps to perform.
For instance, the robot would have to go to the kitchen, find the bread, remove a dlice, find the toaster,
put the bread in the toaster, push the button, wait for it to cook, remove the bread, and then find a plate to
place it on. Once this sequence of events has been "programmed,” all you need to tell the robot the next
time you want mast is ssimply "make toast." The same principle applies to telling the robot how to make
coffee, eggs, juice, etc. After the robot has been taught all of the individual routines, you may then put

http://www.jes.com/pb/pb_wp3.html (5 of 13) [8/21/2000 10:49:24 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 3

them all together by telling the robot to "make breakfast." To the robot, this means make toast, make
coffee, make eggs, etc. Although this may seem like an elementary example, it introduces the principle of
modularity. Programs typically are comprised of a series of individual, self-standing modules, each of
which performs a specific task.

Asthisrelates to the subject at hand, the entire logic of any program problem may be written first in
comments, as in this example. Once the logic isin place, the source instructions of the appropriate
language may be inserted after the comments, hence the principle of pseudocode.

MORE ON THE PRINT STATEMENT

The PRINT statement in line 11 displays "PLEASE ENTER YOUR NAME" on the screen and positions
the cursor two spaces to the right of the word NAME. Note that the space between the word NAME and
the "character isto force the space between the literal and the cursor.

011 PRI NT "PLEASE ENTER YOUR NAME *

Throughout this book, many other forms of the PRINT statement are explained, including its ability to
print at specific coordinates on the screen or to do special functions like erase the screen. The PRINTER
ON and PRINTER OFF statements also affect the output of PRINT statements.

THE INPUT STATEMENT

The INPUT statement causes the program to wait for the user to enter something on the keyboard:
012 | NPUT NAME

When input isreceived, it is placed into the variable following the INPUT statement, which in this caseis
the variable NAME. Generally, what the user enters on the keyboard must be followed by a press of the
Return key, although Pick provides the ability to automatically issue the Return when a certain number

of characters have been received.

THE IF STATEMENT AND NULL STRINGS

The |IF statement is used to determine whether or not a certain condition applies before continuing
execution. |F statements are always followed by conditional expressions, which are expressions which
derive either a"true" or "false" value. In the Pick System, "true" is represented by a numeric nonzero
(normally 1), and "false" is represented by O (zero) or null.

017 IF NAME = "" OR NAME = "QUIT" THEN STOP

This |IF statement checks to see if the variable NAME contains any data. The portion of the statement
NAME ="" reads like this: If the NAME is null, which means that you simply pressed the Return key,
then the conditional expression istrue; if you entered a< cr >, then the variable NAME will be cleared
(set to null). In PICK/BASIC, the null string is represented as " (two single quotes) or "" (two double
guotes) or even "\\" on some platforms. . The ":" prompt character previously defined in the PROMPT
statement appears to the immediate |eft of the cursor.

http://www.jes.com/pb/pb_wp3.html (6 of 13) [8/21/2000 10:49:24 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 3

| F ANSWER = "Y" THEN ...
| F AMOUNT > 0 THEN ...
| F OLD. AMOUNT # NEW AMOUNT THEN . . .

Note: The situations where the equivalence to 0 (zero) of anull value, which istypically represented by
two quotation marks with nothing between them, occurs in other placesin the Pick System. For example,
if you attempt to add up fields which normally contain numeric data, such as money amounts, and one or
more fields contain null (or any other non-numeric data), then these fields are treated as though they
contained the value O (zero).

A good way to check how your system handles nullsisto try the following statementsin a test program:

001 A=""
002 B =0
003 IF A =B THEN PRINT "YES' ELSE PRI NT " NO'

On most versions of Pick, thiswill print "NO"

BOOLEAN OPERATORS

Two or more conditional expressions may be connected by a Boolean operator, which is one of the words
AND or OR. Normally, when only one conditional expression follows an |F instruction, then the
statement (or statements) following the THEN is (are) executed if the expression evaluates true.
Otherwise, unless an EL SE is present, control "falls through” to the next physical line of the program.
The ELSE initiator is optional in the IF construct, and is explained at the end of Example 2 in Chapter 4.

When two conditional expressions are connected with an OR, then either of them evaluating true causes
the statement(s) following the THEN initiator to be executed. Having an AND connect the conditional
expressions means that both expressions must evaluate true in order for the statement(s) following the
THEN initiator to be executed.

This line has two possible choices for executing the STOP statement which follows the THEN initiator.
Either anull (carriage return or line feed) or the word QUIT would have caused the STOP statement to
be executed.

Here are sample conditional expressions using Boolean operators:
| F ANSVER = "Y" OR ANSVER = "" THEN ...

This statement indicates that if either of the conditional expressions evaluate to true, then the statement
(or statements) after the THEN initiator will be executed.

| F BALANCE. DUE > 0 AND | NTEREST. FLAG = "Y" THEN ...

This second statement indicates that both of the conditional expressions must evaluate true in order to
execute the statement (or statements) following the THEN initiator.

http://www.jes.com/pb/pb_wp3.html (7 of 13) [8/21/2000 10:49:24 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 3

BAIL-OUT MECHANISMS: THE CONCEPT OF
"ESCAPE PODS"

Eventually (if it hasn't happened to you already) you will run a program that prompts you to enter
something and you will not know exactly what it wants. Maybe it needs something in a particular format,
like a date or money amount, but you have no way of knowing. So you try pressing Return and it
displays something like "INPUT REQUIRED!" and prompts you again. You try "END" or "QUIT" or
“?' or "HELP." Then you try your favorite obscenity, again to no avail. In frustration, you try the data
entry operator's last resort--the BREAK key--and find that it has been disabled. At times like thisyou
reconsider your future in data processing and consider aless frustrating career, like religious cult
management or being an air traffic controller.

To make along story short, it is avery thoughtful touch to allow operators an escape or "bail-out"
mechanism. This means that any time in your programs that an operator is prompted to input data, one
consistent response is always available. This word (or character) istheir panic button. In al of the
tutorial examples, QUIT is used as the magic word. Y ou may choose anything you want, but whatever
you choose should be the first thing you teach your data entry operators. Tell them that when they enter
thisword, it means "Get me out of here!"

Implementing the escape pod principle has some remarkable side effects. Firgt, it greatly reduces the
fears of your users, assuring them that they may always escape in an orderly fashion from any program
without hurting anything. Second, it allows you, the programmer, the benefit of cleaning up any
unfinished program business before returning the user to the process or menu that sent them there.

The most important aspect of implementing your escape pod scheme is that you remain consistent in
what you check or test for to allow them to bail out. Don't make it " X" in one place, "QUIT" in ancther,
and "END" in yet another.

Line 17 iswaiting for either anull or "QUIT" to allow the operator to get out. If that's what the operator
inputs, then the program stops.

THE STOP STATEMENT

The STOP statement immediately terminates the execution of a program:
017 IF NAME = "" OR NAME = "QUI T" THEN STOP

If the program was activated from TCL, by entering >RUN BP EX.001, or >EX.001, then control returns
to the TCL prompt character. If, however, the program had been executed from a menu, perhaps written
in the PROC (procedure) language, then control automatically returns to the menu. The ABORT
statement is the first cousin to the STOP statement. The difference is that when the ABORT is executed,
control returns unconditionally to TCL, regardless of how the program was activated.

http://www.jes.com/pb/pb_wp3.html (8 of 13) [8/21/2000 10:49:24 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 3

PRINTING EXPRESSIONS WITH PRINT

This statement prints the literal "HELL O THERE "on the screen and prints the current value of NAME,
meaning, whatever you entered previously at the prompt to enter your name. Note that there is a space
after the word "THERE" to force a space between the word "THERE" and your name.

018 PRI NT "HELLO THERE " : NAME

This print expression was composed by a concatenation operation. First the literal "HELLO THERE
"was concatenated (or linked) to the current value of the NAME variable. Once the concatenation was
complete, the entire expression was printed.

Avoiding Redundancy and Repetition. Many of the instructions that have been covered up until now,
such as PRINT, INPUT, IF-THEN, PROMPT, and comments, are used extensively throughout the rest of
the tutorials. Rather than explaining the same things over and over, they will not be documented hereafter
unless some new twist or nuance is being introduced.

THE NUM FUNCTION

The NUM function is one of several Pick intrinsic functions considered to be a " self-standing"
conditional expression, i.e., one which evaluatesto either a zero or null for "false,”" or a numeric nonzero
value (normally 1) for "true."

030 | F NUM RESPONSE) THEN

031 PRI NT "ABS VALUE OF " : RESPONSE : " IS " : ABS(RESPONSE)
032 PRI NT "THE SQUARE IS " : RESPONSE * RESPONSE

033 PRI NT "THE SQUARE ROOT | S ": SQRT(RESPONSE)

034 STOP

035 END

This statement tests the string received in RESPONSE to determine whether or not it isanumber. In the
Pick System, anumber isastring of digits with an optional period or decimal point. If it is determined to
be a number, then al of the statements, up to and including line 34, are executed. If the response is not a
number, then execution continues after the next END statement (which occurs on line 35).

An important note: Some, but not all, versions of the Pick System consider "null" to be numeric. This
adds alevel of complexity to your |F statements when they determine whether something is numeric; it
must additionally be checked to seeif it isnull or not null, as the case may be.

If you did enter a number, then the statements on lines 31-35 are executed.

THE ABS FUNCTION

The ABS function produces the absolute (positive) value of a numeric string:
031 PRINT "ABS VALUE OF " : RESPONSE : " IS " : ABS(RESPONSE)

http://www.jes.com/pb/pb_wp3.html (9 of 13) [8/21/2000 10:49:24 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 3
Suppose that you had entered -123.45 as your response; Line 31 would display:
ABS VALUE OF -123.45 | S 123

The ABS function comes in handy when printing the bottom-line totals of profit and loss reports for
unstable companies.

Note that no range checking took place on the numbers you entered. This program may produce unusual
results if the number istoo large.

FINDING SQUARES AND SQUARE ROOTS

The next two lines utilize the PRINT statement and the SQRT function to determine squares and square
roots.

032 PRINT "THE SQUARE IS " : RESPONSE * RESPONSE
033 PRINT "THE SQUARE ROOT |S " : SQRT(RESPONSE)

The statement in line 32 prints the message "THE SQUARE IS ", followed by an expression which takes
the value of RESPONSE and multipliesit by itself. Thisis here ssimply to demonstrate the fact that
formulas may be 1) performed in the same line asa PRINT statement, or 2) may be "assigned” to a
variable on a separate source line and have the value displayed here. Both ways am discussed throughout
this book.

Thereis aso the intrinsic function EXP, which may be used to raise a number to other exponential
values, aswell as the " operator that also indicates exponentiation. See Appendix B for the syntax.

The SQRT function produces the square root of a numeric expression. This displays the message shown,
followed by the square root of RESPONSE.

THE END STATEMENT

When an IF-THEN statement or IF-THEN-EL SE statement spans more than one physical line of a
program, it must be terminated with an END statement:

035 END

This principleisreferred to as the initiator/terminator relationship, and is discussed immediately
following this example. This particular END statement terminated the THEN initiator which started at
line 30.

THE ALPHA FUNCTION

The ALPHA function, like the NUM function discussed earlier, is aso considered a conditional
expression, one which evaluates to a true (numeric nonzero) or false (zero or null) condition. They are
most often used in IF- THEN, IF-THEN-ELSE, and in CASE constructs:

http://www.jes.com/pb/pb_wp3.html (10 of 13) [8/21/2000 10:49:24 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 3

039 | F ALPHA(RESPONSE) THEN

040 PRINT "THE LENGTH OF " : RESPONSE : " IS " : LEN(RESPONSE)
041 STOP
042 END

This statement tests the variable RESPONSE to determineif it contains only alphabetic characters. This
means no characters other than the letters A through Z (upper- or lowercase). If this evaluates true, then
the statements up to the next END statement are executed. Otherwise, execution of the program
continues after the next END statement, which happens to occur on line 42.

If this message appears, then it means that the response that you provided to the variable RESPONSE
was not considered either entirely numeric or alphabetic:

046 PRI NT "YOUR RESPONSE WAS NOT CONSI DERED NUMERI C OR ALPHABETI C'
Consequently, this line displays the message shown and program execution stops at the next line.

THE LEN FUNCTION

If you enter a string of characters that is considered to be composed entirely of al phabetic characters at
the INPUT statement on line 24, then the LEN statement on line 40 will be executed:

040 PRINT "THE LENGTH OF " : RESPONSE : " IS " : LEN(RESPONSE)

The LEN function determines and reports the number of charactersin astring or string expression.
Suppose you enter "ARISTOTLE" into the variable RESPONSE. Line 40 then displays

THE LENGIH OF ARI STOTLE |S 9

THE FINAL END STATEMENT

The END statement (more accurately called a compiler directive) occursin two placesin PICK/BASIC.
Thefirst occurrence iswhen it is used as aterminator for amultiline IF-THEN or IF-THEN-EL SE
statement. The second and final form is as a program terminator, meaning that thisisthe logical end of
the program. On most Pick systems, if the final END statement is|eft out, one is automatically assumed
at the end of an item (remember, even programs are considered "items"). Y ou should include the final
END statement just for consistency. This END statement on line 47 terminates the program.

Thisfinishes the first example. Before moving on to Example 2, take a closer look at the IF statement.

THE IF-THEN STATEMENT

The |F statement has perhaps the greatest variety of possible syntactical forms of any instruction in the
language. Since it is one of the most frequently used statements, it isimportant to understand the
mechanics of how and when they are used. The examples and discussions will first focus on the
"simplest" forms. As you progress through the examples, more sophisticated cases and uses are
uncovered. Example 1 illustrates the forms.

http://www.jes.com/pb/pb_wp3.html (11 of 13) [8/21/2000 10:49:24 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 3

The Single-Line Form

The"single-line" form means that the entire logic test, and the instructions which are to be executed
when it evaluates true, are contained in one physical source line. The first general form has a syntactical
form which appears as:

| F condi tional.expressi on THEN st at enent

If the conditional expression evaluates true (numeric nonzero), then the single statement after the THEN
initiator is executed and program execution continues on the next line of the program. If it evaluates false
(zero or null), program execution continues from the next line.

Since statements may be delimited by a semicolon, the next form of this occurs as:
| F conditional.expression THEN statenent; statenent; statenent...
When this conditional expression evaluatestrue, al of the statements following the THEN initiator are

executed. Thereisno logical limit to the number of statements that may be put here but, as arule of
thumb, use the multiline form of the IF statement when more than afew statements are to be executed.

The single-line form is useful when there is only one statement to execute upon evaluation. There are,
however, many cases in programs where many statements need to be performed on atrue condition.
Rather than trying to place these all on one physical line with semicolons between the statements, thereis
the next logical extension to the IF-THEN construct.

The Multi-line IF-THEN Construct

The multiline IF-THEN construct has the general form:

| F condi tional . expressi on THEN
st at enment
st at enment

END

| F conditional. expression THEN
st at enent (S) :
| F condi tional . expressi on THEN
statenent (s).
| F conditional. expression THEN
stat enment (s)
END
st at enent (s)
END
st at enent (' s)
END

Fig. 3-2. Nesting conditional statements.

http://www.jes.com/pb/pb_wp3.html (12 of 13) [8/21/2000 10:49:24 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 3

The multiline form introduces the concept of the initiator/terminator relationship. When the THEN
instruction appears as the last word in an IF- THEN statement, it is considered an initiator, meaning that
it must be terminated later with an END statement. When the conditional expression evaluates false,
program execution continues with the first executable statement after the END statement.

There are cases where "nested” |F statements are needed (Fig. 3-2). When they are the last word on a
source line, remember to terminate every THEN or EL SE with an END.

Avoid having too many levels of nested |F statements. It makes programs more difficult to figure out and
Increases the probability of logic and syntax errors (see the use of the CASE construct in Chapter 9).
Also, to assist in making the program more readable, try to align the END statement underneath the IF
statement that initiated it.

Note that many instructionsin the PICK/BASIC language allow (or require) the THEN and/or ELSE
construct. Anywhere they are allowed/required, the single- or multiple-line forms may be used.

Note also the fact that on all versions of Pick the first END compiler directive encountered which is not
part of a THEN/EL SE construct above, causes the program to stop compiling.

This concludes Example 1. Now it's time to take areview quiz on the principles discussed. (The answers
are found in the appendix.)

REVIEW QUIZ 1

1) What isavariable?

2) How are PICK/BASIC programs entered into the computer?

3) After aprogram is entered, what two things must be done to activate it?

4) What are remark statements, and why are they used?

5) What characters may safely be used to separate multicharacter variable names?
6) What statement terminates the execution of a program?

7) What is a conditional expression?

8) How many programmers does it take to change alight bulb?

#previous chapter M Next chapter & Top

Copyright © 1985-2000 Jonathan E. Sisk. It is against the law to reproduce or distribute thiswork in any
manner or medium without written permission of the author, c/o JES, Inc., P.O. Box 19274, Irvine, CA
92623, phone (949) 553-8200, fax (949) 553-9779, email: |sisk@jes.com.

http://www.jes.com/pb/pb_wp3.html (13 of 13) [8/21/2000 10:49:24 PM]

mailto:jsisk@jes.com
http://www.jes.com/
mailto:jsisk@jes.com

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 4

8 Jonathan E. SIsk's
Pick/BASIC: A Programmer's
Guide

WWW Edition January, 2000

Chapter 4
The Concept of Loops

In the first programming example, an important aspect of Pick/BASIC was covered: data hasto be
checked to be surethat it adheresto some some format or condition. Thisis called data validation.
Even though the Pick System has no concept of data types, as programmers and users we must ensure
that data entered via the terminal is checked. We cannot effectively use a system if the contents of its
items are not reliable.

Program Example 2 continues in this exploration of editing techniques and introduces the principles of
reiteration ("looping"), string manipulation, and some expansions on the IF-THEN construct. Statements
and functions covered include: MATCHES, GOTO, COUNT, TRIM, IF-THEN-EL SE,
LOOP-UNTIL-REPEAT.

Thefirst seven lines of the example reiterate principles, concepts, and instructions covered in Example 1.
From this point on in the book, only new topics and new ideas on previous topics are examined.

Enter Example 2, shown in Fig. 4-1.

Fig. 4-1. Program Example 2.

TOP

N

001 * EX 002

002 * DATA VALI DATI ON, BRANCHI NG AND LOOP STRUCTURES
003 * mm dd/yy: date |ast nodified

004 * JES. author's initials

GOHRS

006 PROWPT ":. "

007 *

008 10 * GET VALID SCCI AL SECURI TY NUMBER
009 *

010 PRI NT

011 PRI NT "ENTER SOCI AL SECURI TY NUMBER (nnn-nn-nnnn) ":

http://www.jes.com/pb/pb_wp4.html (1 of 13) [8/21/2000 10:49:27 PM]

http://www.jes.com/gifs/adsnstuf/pb2bl.jpg

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 4

012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

| NPUT SOCI AL. SECURI TY. NUMBER
| F SOCI AL. SECURI TY. NUMBER = "QUI T" THEN STOP
*

* CHECK RESPONSE FOR ACCEPTABLE PATTERN

*

| F SOCI AL. SECURI TY. NUMBER MATCHES "3N -'2N -'4N' THEN
PRI NT "THAT' S A GOOD NUMBER' ; * MJST BE GOOD.

END ELSE
PRI NT " SORRY, NOI' A GOOD NUMBER. TRY AGAI N

G&Oro 10 ; * MUST NOT BE GOOD.

END

*

20 * CGET VALI D DATE
*

PRI NT

PRI NT "ENTER A DATE (mm dd-yy) "
| NPUT TEST. DATE

| F TEST. DATE = "QUI T" THEN STOP
*

* CHECK "FI XED' PATTERN MATCH FI RST
*
| F TEST. DATE MATCHES "2N -' 2N -'2N' THEN

PRI NT

PRI NT " DATE PASSED FI XED PATTERN MATCH' ; * YUP. | T PASSED.
END ELSE

PRI NT

PRI NT " DATE FAI LED FI XED PATTERN MATCH' ; * NOPE. NO GOOD.
END

*

* NOW CHECK VARI ABLE PATTERN MATCH
*
| F TEST. DATE MATCHES " 1NONL1XINON1X2NON' THEN
PRI NT
PRI NT " DATE PASSED VARI ABLE PATTERN NMATCH'
END ELSE
PRI NT
PRI NT " DATE FAI LED VARI ABLE PATTERN NMATCH'
END

*

* GET STRING FOR ALPHA AND MATCHES TEST

*

LOOP
PRI NT
PRI NT "ENTER A WORD FOR THE ALPHABETI C TEST"
| NPUT ALPHA. STRI NG

UNTI L ALPHA(ALPHA. STRI NG DO

http://www.jes.com/pb/pb_wp4.html (2 of 13) [8/21/2000 10:49:27 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 4

058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103

PRI NT

PRI NT " SORRY, THAT FAILED THE ALPHA TEST. TRY AGAI N
REPEAT
| F ALPHA. STRING = "QUI T" THEN STOP

*
* PASSED ALPHA, NOWTRY | T WTH " MATCHES"
*

| F ALPHA. STRI NG MATCHES " O0A" THEN ;* THAT' S A ZERO
PRI NT

PRI NT "THAT ALSO PASSED THE MATCHES TEST"

END

*

* CGET SENTENCE FOR " COUNT" TEST

*

PRI NT

PRI NT "ENTER SEVERAL WORDS EACH SEPARATED BY A BUNCH OF SPACES"
| NPUT WORD. STRI NG

| F WORD. STRING = "QUI T" THEN STOP

X
* DETERM NE THE NUVBER OF SPACES

NUMBER. OF. SPACES = COUNT(WORD. STRING, ")
X

* TELL OBSERVER HON MANY SPACES THERE ARE
PRI NT

PRI NT " YOUR RESPONSE CONTAI NED' : NUMBER. OF. SPACES : " SPACES"
*

* STRI P EXTRA SPACES

*

WORD. STRI NG = TRI M WORD. STRI NG)
*

* DETERM NE NUMBER OF SPACES AFTER STRI PPI NG W TH TRI M

*

NUVBER. OF. SPACES = COUNT(WORD. STRING, " ")
*

* TELL OBSERVER THE NEW NUMBER

*

PRI NT

PRI NT "AFTER TRI MM NG THERE ARE" : NUMBER OF. SPACES : " SPACES"
*

* SHOW OBSERVER THE STRI NG AFTER THE TRIM

*

PRI NT

PRI NT "HERE' S WHAT THE STRI NG LOCKS LI KE AFTER THE TRIM "
PRI NT

http://www.jes.com/pb/pb_wp4.html (3 of 13) [8/21/2000 10:49:27 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 4

104 PRI NT WORD. STRI NG
105 END

A Note about Program Execution. A PICK/BASIC program begins executing at the first executable
(non-remark) statement in the program and then "walks down" through the program, one statement at a
time, until it runs out of statements and the program stops. V arious statements are used to overcome this
default sequence of events. The |F statements are used to control which statements are executed,
depending on the outcome of tests conducted in their conditional logic. The GOTO statement makes the
program resume execution at alocation other than the next physical source line, by transferring program
execution to a statement label. Various other statements provided in PICK/BASIC allow the program to
overcome the default sequential execution of a program.

USING STATEMENT LABELS

There are occasions in a program where execution may have to transfer to a point other than the next
immediate line. Most often this is because a section of code must be repeated, or to bypass certain
instructions. This phenomenon is known as looping and involves the use of statement labels. (Note that
there are other, even better methods available to perform loops.)

On most Pick systems, a statement label is a number at the beginning of a sourceline. In our example:
008 10 * GET VALID SOCI AL SECURI TY NUMBER

Note that the attribute (or line) numbers (*008" in this example) have nothing to do with statement labels
("010" in this example). Line numbers are placed on the left side of the screen by the Editor.

Statement labels are optional in PICK/BASIC. They are only used to indicate the destination of a GOTO
or GOSUB statement elsewhere in the program. It isagood idea, however, to insert them only when they
have a purpose. Unnecessary statement labels might be misleading during debugging and maintenance.

Spaces are generally not important to the syntax of a program. Some compilers are sensitive to the
placement of spaces between variables and keywords (PICK/BASIC instructions), so it is advisable to
put spaces between each keyword/variable in a statement. When a statement label is placed on a source
line in a program, it must be the first non-blank character on the line and must be followed by avalid
PICK/BASIC statement. One popular convention isto have only remark statements on source lines that
contain statement labels, as in the previous example.

Some implementations of Pick allow statement labels to contain or consist of aphabetic characters. For
example, on systems which support alphabetic labels, asillustrated in Fig. 4-2.

033 GOSUB PRI NT. DETAI L. LI NE
*

*

127 PRI NT. DETAI L. LI NE: ;* ROUTINE TO PRI NT DETAIL LI NE ON CHECK

http://www.jes.com/pb/pb_wp4.html (4 of 13) [8/21/2000 10:49:27 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 4

Fig. 4-2. Using a phabetic statement |abels.

THE MATCHES RELATIONAL OPERATOR

Online 17, atest is made to determine whether the input matches a predetermined pattern, using the
MATCHES relational operator:

017 I'F SOCI AL. SECURI TY. NUMBER MATCHES "3N -'2N -'4N' THEN

If it does match, then the message "THAT'S A GOOD NUMBER" appears on the screen, and program
execution continues after the END statement on line 22. If it does not match the pattern, then the message
"SORRY, NOT A GOOD NUMBER. TRY AGAIN" appears on the screen and program execution
transfers, viathe GOTO statement, back to line 7, where the statement label "10" appears. Using the
GOTO statement in this form illustrates one means of setting up a repetitive loop function.

The MATCHES (or MATCH) relational operator checks data against a pattern. Three pattern-match
operators are available: "N" for numeric, "A" for aphabetic and " X" for wildcards (any character). These
pattern-match operators must be preceded by an integer number (or zero), which indicates the exact
length of the number of characters that will be accepted. In addition to the three pattern-match operators,
Literals may be specified by enclosing literal stringsin quotes. Parts A through D of Fig. 4-3illustrate
various pattern matches.

The pattern-match string in line 17 of the program indicates that the only string that will be accepted is
one in which the first three characters are numbers, followed by a hyphen (-), followed by two numbers,
another hyphen, and four more numbers. (When a pattern match operator is preceded by a zero, any
number of the character type are accepted.)

Part A of Fig. 4-3 shows aform similar to line 17, here applied to dates. This form is technically correct
but is not very flexible; it forces the operator to precede the one-character months (like May) and days of

the month (like the fifth) with a0 (zero) during entry. Further, it only allowsthe "-" as adelimiter.

Mat ch Accept abl e Unaccept abl e
expr essi on I nput | nput
"2N -' 2N -' 2N 12-01-97 12/ 01/ 97
12-1-97

" 1NON1X1NONLX2NON' 12-12-97 1DEC97

12/ 12/ 1997 12-12

2-2-97 1- -1
" 1A2N1A3N' A22T003 A2T03
"1A0A , ' 1A0A" PALMER, ARNIE ARN E PALMER

Fig. 4-3. Examples Of pattern matching expressions for A) date input, B) generalized date input, C)
combined alphabetic and numeric entries, and D) common data entry conventions.

http://www.jes.com/pb/pb_wp4.html (5 of 13) [8/21/2000 10:49:27 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 4

The Pick System does not require leading zeros or any specific delimiter between months, days, and the
year. The only ruleisthat the delimiter must be non-numeric, and consistent. The next pattern match
accepts virtually any valid "external" date format.

This expression literally reads, "Look for one number (1N) followed by any length of numerals (ON),
which also includes zero numerals, followed by any character (1X) as a delimiter, and so on. Thisvery
"generalized" date pattern match handles just about any valid date. Using this technigue prevents you
from having to code individually all the possible pattern matchesin a complex IF-THEN statement using
multiple OR clauses.

The third example of Fig. 4-3 illustrates a pattern composed of letters and numbers. It specifically
requires one alphabetic character, followed by two numbers, followed by another single aphabetic
character, followed by three numbers. Part D illustrates a pattern of alphabetic characters, separated by
the comma. This shows how the MATCHES operator may be used to enforce data entry conventions,
which assist in standardizing the methods by which datais entered.

THE IF-THEN-ELSE CONSTRUCT

At the end of Example 1 there was an explanation of the single-line IF- THEN and the multiline
IF-THEN constructs. The other extension to the | F statement is the EL SE construct, which in this
example appearsin lines 17- 22:

017 I'F SOCI AL. SECURI TY. NUMBER MATCHES "3N -'2N -'4N' THEN

018 PRI NT "THAT' S A GOOD NUMBER' ; * MJST BE GOOD. LET'S CONTI NUE
019 END ELSE

020 PRI NT " SORRY, NOI A GOOD NUMBER. TRY AGAI N

021 G&Or0 10; * MJUST NOT BE GOOD.

022 END

The THEN initiator precedes the statement, or statements, and executes when the conditional expression
evaluates true (numeric nonzero). The EL SE construct precedes the statements and executes on afalse
condition (i.e., zero or null).

The Single-Line Form

Thefirst, and simplest, general form of the single-line IF-THEN-EL SE construct is:
| F conditional .expression THEN statement EL SE statement

Thisreads, "If the conditional expression evaluates true, then the single statement after the THEN
initiator is executed and program execution continues on the next line of the program,; if the conditional
expression evaluates false, then the single statement after the EL SE initiator is executed and program
execution continues on the next line of the program."

Since statements may be delimited by semicolons the next form of this construct occurs as.

| F conditional .expression THEN statement; statement EL SE statement; statement...

http://www.jes.com/pb/pb_wp4.html (6 of 13) [8/21/2000 10:49:27 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 4

(Notethat thisis till the single-line form!) If the conditional expression evaluates true, then the
statements after the THEN initiator are executed in turn. If it evaluates false, then al of the statements
after the EL SE initiator are executed. Once again, there is no limit to the number of statements that may
follow the THEN or EL SE clause, but when there's more than one, it makes the program much more
mai ntainable to have each statement on a separate line.

The Multiline Form

Asdiscussed earlier in the explanation of the single-line form, it is generally accepted that when thereis
more than one statement to perform after the THEN or EL SE initiator, then the multiline form is used.
This version has the general form:

| F condi tional . expressi on THEN
st at enent
st at enment
st at enent
END ELSE
st at enment
st at enent
st at enent
END

Thisform also relies upon the initiator/terminator relationship introduced earlier. When the THEN
appears as the last word on aline, it is considered an initiator, which means that it must be terminated on
a subsequent source line with an END statement.

The same situation holds true with the EL SE clause. When the EL SE appears as the last word on aline, it
too must be terminated later with an END statement.

When the conditional expression evaluates true, all of the statements up to the next END EL SE statement
are executed. Because of the EL SE clause, after these statements execute, execution transfersto the first
executable statement after the next END statement. When the conditional expression evaluates false,
execution transfers to the statements following the END EL SE statement, and after execution, program
execution continues with the next executable statement after the END statement.

THE GOTO STATEMENT

The GOTO statement makes the program resume execution at the first statement following the label
number that follows the GOTO statement. (Remember that the source line numbers along the | eft side of
the screen are placed there by the Editor, and have nothing to do with statement labels.) If thislineis
executed, program execution transfers to statement label "10," which happens to occur on source line 8.

021 GOTO 10; * MJST NOT BE GOCD. MAKE THEM TRY AGAI N.

Here is another example of the GOTO statement:

http://www.jes.com/pb/pb_wp4.html (7 of 13) [8/21/2000 10:49:27 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 4

001 COUNTER = O

002 10 COUNTER = COUNTER + 1
003 PRI NT COUNTER

004 | F COUNTER = 5 THEN STOP
005 GOTO 10

Thisillustrates the logic behind using the GOTO statement to perform loops. In this case, the variable
COUNTER isassigned an initial value of zero on line 1. On line 2, COUNTER is incremented by taking
its current value and adding 1 (one) to it. The result of the calculation is assigned to the variable
COUNTER so that its value isnow 1 (one). Line 3 prints the current value of COUNTER, which outputs
al (one) on the next line on the screen. Line 4 is where the test takes place. The logic of line 4 indicates
that if the current value of COUNTER is 5, then the program stops. Since there is no EL SE clause in the
|IF-THEN statement, the logic "falls through" to the next line (5) each time through the loop until the
valuein COUNTER reaches 5. The GOTO statement on line 5 unconditionally transfers program
execution to line 2, where it finds the statement label "10."

While some programmers use GOTO statements as a standard practice, many programmers never use
them. The reason that GOTOs are forbidden in some programming shops is that when they are overused
and/or used incorrectly, they make program logic much harder to analyze--leading to what is often called
"spaghetti code.”

Forbidding GOTO statements is a technique that is frequently associated with the concept of structured
programming, which is discussed in Chapter 13, following the discussion of subroutines and loops.

FIXED AND VARIABLE PATTERN MATCHES

This block of code illustrates the principles mentioned earlier in the explanation of pattern matches:

033 I F TEST. DATE MATCHES "2N -'2N -'2N' THEN

034 PRI NT

035 PRI NT " DATE PASSED FI XED PATTERN MATCH' ; * YUP, | T PASSED.
036 END ELSE

037 PRI NT

038 PRI NT " DATE FAI LED FI XED PATTERN MATCH'; * NOPE, NO GOOD.
039 END

Specifically, the program is waiting for the input of a date. After receiving the input, online 33 it is
tested for a"fixed" pattern of 2 numbers followed by a"-" delimiter, two more numbers, another dash,
and two more numbers. If the input adheres to this format, the message from line 35 displays; otherwise
the message from line 38 displays.

The pattern match on line 43 is much more flexible about accepting input. Although it looks much more
complicated, the benefit achieved in using it outweighs the complexity of coding it.

043 | F TEST. DATE MATCHES " 1NON1X1NON1X2NON' THEN
044 PRI NT

http://www.jes.com/pb/pb_wp4.html (8 of 13) [8/21/2000 10:49:27 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 4

045 PRI NT " DATE PASSED VARI ABLE PATTERN MATCH'
046 END ELSE

047 PRI NT
048 PRI NT " DATE FAI LED VARI ABLE PATTERN MATCH'
049 END

Specifically, this pattern match looks for at least one number, followed by any character, at least one
number, another character, and then at least two numbers.

THE LOOP CONSTRUCT

The concept of loops was introduced earlier in this example. There are actually several methods available
to perform loops. Coincidentally, thisoneis called "LOOP":

053 LOCP

054 PRI NT

055 PRI NT "ENTER A WORD FOR THE ALPHABETI C TEST"

056 | NPUT ALPHA. STRI NG

057 UNTIL ALPHA(ALPHA. STRI NG DO

058 PRI NT

059 PRI NT " SORRY, THAT FAILED THE ALPHA TEST. TRY AGAI N
060 REPEAT

The LOOP construct has nearly as many possible forms as the IF- THEN statement; for the most part,
however, there are several relatively "standard" methods of use. One such formisillustrated in Fig. 4-4.

001 COUNTER = O ;* Assign initial value

002 LOOCP ;* Start/Return point

003 COUNTER = COUNTER + 1 :* Increnent Counter
004 PRI NT COUNTER ;* Di splay Counter

005 UNTIL COUNTER = 5 DO :* Check to see if done
006 REPEAT :* Not done, return to LOOP

007 STOP :* W're outta here...

Fig. 4-4. Standard form of the LOOP construct.

This standard form effectively does the same thing as the loop described earlier, which used the GOTO
statement. Note that the LOOP form does not require statement labels or GOTO statements.

On line 1 of Fig. 4-3, the variable COUNTER isinitialized to zero. On line 2 the LOOP statement
appears, which indicates the beginning of a LOOP process. Thisis the point at which program execution
returns when the next REPEAT statement is executed. The statements on lines 2 and 3 execute
unconditionally, incrementing the value of COUNTER by 1 (one) and printing its value.

At line 5, the conditional expression test takes place to determine when to exit the loop. Line 5 reads, "If

http://www.jes.com/pb/pb_wp4.html (9 of 13) [8/21/2000 10:49:27 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 4

the current value of COUNTER isNOT 5, then REPEAT the process." Otherwise, when COUNTER
does reach 5, execution transfers to the next statement after the REPEAT statement. In this case, that's
line7.

THE UNTIL CLAUSE AND DO INITIATOR

Each time the LOOP statement is initiated, there must be an UNTIL (or WHILE) clause:

057 UNTIL ALPHA(ALPHA. STRING DO

The UNTIL/WHILE is aways followed by a conditional expression and the initiator, DO, in the form:
UNTIL conditional.expression DO

or

WHILE conditional .expression DO

On line 57, the conditional expression tests the contents of the variable ALPHA.STRING to determine if
it isentirely composed of alphabetic characters. The logic of thislinereads, "If ALPHA. STRING
contains only alphabetic characters, meaning that the ALPHA function evaluates true, then exit the loop."
This means that program execution continues at line 61. Otherwise, the message "SORRY, THAT
FAILED THE ALPHA TEST. TRY AGAIN" prints, and the REPEAT statement forces the loop to start
over from line 53, where the L OOP statement occurs.

The basic difference between the UNTIL and the WHILE clauseisinitslogic. The UNTIL form works
until atrue (or positive) result occurs as a result of its conditional expression. The inverse of thisisthe
WHILE form, which works while its conditional expression evaluates as true (numeric non- zero), or
until it evaluates as false (zero or null). Fortunately, since they are so close in meaning, you may use one
form for nearly every loop.

Note: On many systems, the UNTIL and WHILE clauses are optional in the LOOP construct. The EXIT
statement may be used to terminate the loop.

A COMPARISON OF MATCHES AND ALPHA

Line 65 of the example, using the MATCHES relational operator, checks the input to determineif itis
composed entirely of alphabetic characters, just like the ALPHA function did earlier:

065 | F ALPHA. STRI NG MATCHES "OA" THEN

066 PRI NT

067 PRI NT " THAT ALSO PASSED THE MATCHES TEST"
068 END

Thisillustrates an important principle in the Pick System. Thereis virtually always more than one way to
do somethingl. These two separate functions only appear to be identical. The ALPHA function is, in
fact, more efficient in terms of the amount of CPU "horsepower” required to perform the function, This

http://www.jes.com/pb/pb_wp4.html (10 of 13) [8/21/2000 10:49:27 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 4

happens to hold true when the NUM function is compared with the MATCHES "ON" as well, but the
NUM function is more efficient than its"MATCHES" counterpart. This means that:

ALPHA(string) is better than MATCHES "0A™
and that
NUM (numeric.expression) is better than MATCHES "ON"

The moral of this story is. Use the MATCHES statement only for "composite" or complex pattern
matches, like dates or general ledger account numbers. Use the intrinsic functions, NUM and ALPHA,
on purely numeric or alphabetic data, respectively.

Note that some characters, notably the hyphen and period will "pass" as acceptable numeric charactersin
the NUM function but are not accepted with the MATCHES "ON" statement.

THE COUNT FUNCTION

The COUNT function is used to determine the number of occurrences of a character, or a string of
characters, within another string of characters. This example simply determines the number of spacesin
the string of characters that you entered, and reportsit on line 84:

079 NUMBER. OF. SPACES = COUNT(WORD. STRING " ")
For another example of the COUNT function, consider this example:
STRI NG = " ABC* DEF* GHI * JKL"

SEARCH. STRI NG = "*"
NUMBER. OF. STARS = COUNT(STRI NG SEARCH. STRI NG

Upon execution, the variable NUMBER.OF.STARS contains the number 3, since there are three
occurrences of the "*" (asterisk) in the variable STRING. This statement and its counterpart, the
DCOUNT statement, are particularly useful in PICK/BASIC, especially in situations when you need to
determine how many values appear in an attribute. The DCOUNT function is covered in Example 4.

Note that there is a potential problem when using COUNT or DCOUNT with overlapping strings. For
example:

COUNT("XXXXXXXXXX""XXX")
produces "8" asthe result, while
DCOUNT ("XXXXXXXXXX","XXX")

produces "9" as the result. This means that you must carefully make sure that you use DCOUNT only
with a single character as the delimiter, or make sure that the delimiter is not repeated if null fields are
possible within the string being counted.

http://www.jes.com/pb/pb_wp4.html (11 of 13) [8/21/2000 10:49:27 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 4

THE TRIM FUNCTION

The TRIM function statement is very useful for removing extraneous blanks from a string of characters.
When astring is "trimmed," all leading and trailing blanks are removed, and any occurrences of two or
more spaces within the string are replaced by a single blank. On line 88, the string that you entered is
trimmed, and the result is placed back into the same variable:

088 WORD. STRI NG = TRI M WORD. STRI NG)

Consequently, on line 92, where the number of spaces within the string is counted, the number is
dramatically reduced. Line 97 reports the number of spaces now present in theline, and line 102 displays
the result of the TRIM function.

REVIEW QUIZ 2

1) The INPUT statement prints a character before waiting for input. How is this character assigned?
2) How could you make the ">" (right angle bracket) the prompt character?
3) What is a statement |abel ?

4) What are two of the six methods to transfer program execution to another location in a program? (Use
the techniques discussed in this chapter)

5) What relational operator checks input to make sure that it adheresto a particular format?
6) What pattern matches are required to validate the following formats?

A) 02-4000-01

B) A1000/ 101

C) CLAUS, SANTA

D) 12/1/89
E) 1000. 15

7) What two purposes does the END statement serve?
8) Where are spaces significant in a source program?
9) Where else are spaces used, and when?

10) What statement is required to print the number of occurrences of the letter "i" in "Mississippi ?'

#previous chapter M Next chapter & Top

Copyright © 1985-2000 Jonathan E. Sisk. It is against the law to reproduce or distribute thiswork in any
manner or medium without written permission of the author, c/o JES, Inc., P.O. Box 19274, Irvine, CA

http://www.jes.com/pb/pb_wp4.html (12 of 13) [8/21/2000 10:49:27 PM]

mailto:jsisk@jes.com
http://www.jes.com/

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 4

92623, phone (949) 553-8200, fax (949) 553-9779, email: [sisk@jes.com.

http://www.jes.com/pb/pb_wp4.html (13 of 13) [8/21/2000 10:49:27 PM]

mailto:jsisk@jes.com

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 5

=G Jonathan E. Sisk's
28 Pick/BASIC: A Programmer's
Guide

Chapter 5
Calculations and the Principle
of Precedence

In program example 3 the principle of precedenceis discussed and severa of the intrinsic functions
related to numbers are covered. This program also includes a simple guessing game, which further
illustrates the principle of decision points and branching within a program. Topics, statements, and
functions covered include precedence, RND and REM.

Enter Program Example 3 (Fig. 5-1).

Fig, 5-1. Program Example 3.

001 * EX 003

002 * PRECEDENCE OF NMATH OPERATI ONS AND A FEW MATH FUNCTI ONS
003 * mmidd/yy: date last nodified

004 * JES. author's initials

005 *

006 PROVWPT ":"

007 *

008 * SHOW THE EXPRESSI ON W THOUT PARENTHESES

009 *

010 PRI NT

011 PRI NT "HERE I S WHAT HAPPENS WHEN WE RELY ON PRECEDENCE "
012 PRI NT

013 PRINT "10 + 20 * 5 - 12/ 3 =" : 10 + 20 * 5 - 12 / 3
014 *

015 * NOW SHOW I T W TH PARENTHESES

016 *

017 PRI NT

018 PRI NT "HERE |'S WHAT HAPPENS WHEN WE PARENTHESI ZE EXPRESSI ONS :
019 PRI NT
020 PRINT "((((10 + 20) * 5) - 12) / 3) =": ((((10+20) * 5) - 12)/3)

http://www.jes.com/pb/pb_wp5.html (1 of 5) [8/21/2000 10:49:29 PM]

http://www.jes.com/gifs/adsnstuf/pb2bl.jpg

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 5

021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

*

* GET NUMBERS FOR DI VI S| ON TEST

*

PRI NT

PRI NT "ENTER A NUMBER TO DI VI DE"

| NPUT NUMERATOR

| F NUVERATOR = "QUI T" THEN STOP

*

PRI NT "ENTER NUMBER TO DI VI DE BY"
| NPUT DENOM NATOR

| F DENOM NATOR = "QUI T THEN STOP
*

PRI NT

PRI NT NUVERATOR: " DI VI DED BY" : DENOM NATOR:

PRI NT "LEAVES A REMAI NDER OF" : REM NUMERATOR, DENOM NATOR)
*

* NOWN LET'S PLAY GUESSI NG GAME. . .

*

MY. NUMBER = RND(10) + 1 ; * GENERATE THE RANDOM NUMBER

PRI NT

PRI NT "I HAVE A NUMBER BETWEEN ONE AND 10"
PRI NT "TRY TO GUESS WHAT I T I S"

*

* MAKE USER GUESS NUVBER

*

LOoP

PRI NT "ENTER YOUR GUESS'

| NPUT GUESS

|F GUESS = "QUIT" THEN STOP ;* MJST HAVE G VEN UP
UNTI L GUESS = MY. NUMBER DO

PRI NT "SORRY. THAT'S NOT IT. TRY AGAI N'

REPEAT

*

*

PRI NT
PRI NT " CONGRATULATI ONS. YOQU GOT | T"
END

ARITHMETIC OPERATIONS AND PRECEDENCE

Expressions are evaluated in a program in accordance with the rules of precedence. The highest
precedence is parentheses. When parentheses are present in an expression, operations within the
innermost set of parentheses have the highest precedence. The second highest priority is exponentiation.

Multiplication and division both comprise the third level.

http://www.jes.com/pb/pb_wp5.html (2 of 5) [8/21/2000 10:49:29 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 5

When two functions of the same level of precedence occur in an expression, they are evaluated from left
to right. The fourth level is addition and subtraction (with the same left-to-right evaluation scheme).
Level fivein the Pick System, is"print masking," followed on level six by concatenation. Level sevenis
for relational operators (such as">" for "greater than' '), and finally, on level eight, are the logical
operators AND and OR.

Two operators may not be used in succession unless they are separated by parentheses. For example, the
expression:

XN-Y
will not even compile, much lesswork. It must be written as:
F)

Use the higher precedence of parentheses to overcome situations where two operations of the same level,
such as multiplication and division, occur in an expression. Table 5-1 summarizes the precedence of
operationsin Pick.

On line 13 of the example, the result of the calculation is printed. This resultsin the answer "106." Line
20 provides the result "46" because precedence has been atered through the use of parentheses.

013 " BRINT *# L0+ 205" Sl 2 oy 33--="# g 10 7y 20* 5% 512/ 3

Asamatter of style, and to ensure accuracy in mathematical expression, use parentheses when more than
one arithmetic operator appears in an expression.

Table 5-1, Precedence of Mathematical Expressions

Oper at or QOperati on Sanmple in Pick/BASIC
) Exponentiation X " Y
* Mul tiplication X * Y
/ Di vi si on XM oY
+ Addi ti on X Y]
- Subtracti on X-Y
print masking PRI NT X " L#25"
r Concat enat i on X8\
= Rel ati onal D=2
>0 i< Rel at i onal X>Y
=== Rel at i onal X>=Y
#, <>, Rel ati onal X#Y
>< Rel ati onal X ><Y
AND / OR Logi cal X<YANDZ >0

http://www.jes.com/pb/pb_wp5.html (3 of 5) [8/21/2000 10:49:29 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 5

THE REM FUNCTION

The REM function returns the remainder of a numeric expression divided by a second numeric
expression:

035 PRI NT "LEAVES A REMAI NDER OF " : REM NUMERATOR, DENOM NATOR)

REM also happens to be one of the few functions in PICK/BASIC where there is potential ambiguity.
Thisis due to the fact that thereis also a REM statement, which is an alternate means of declaring a
REMark statement.

When the REM appears as the beginning of a statement, the compiler interprets it as aremark statement,
the same asthe * and ! characters. For example:

REM Get user response and determne if valid
Otherwise, it isinterpreted as a remainder function. For example:
PRI NT REM TOTAL. AMOUNT, 2)

or

ANSWER = REM SUB. TOTAL, BALANCE)

THE RND FUNCTION

The RND function generates a random integer number whose value is between zero and the numeric
expression in the parentheses, minus 1.

039 MY. NUMBER = RND(10) + 1; * GENERATE THE RANDOM NUVMBER

In line 39, the RND function would first generate a random number between 0 and 9 (which is 10 minus
1); then 1 is added to the random number, and the result is then stored in the variable MY .NUMBER.
Thismeansthat MY .NUMBER is now anumber between 1 and 10, inclusively.

The RND function is particularly useful for determining amounts of salary increases.

Note that the guessing game program in the example is extremely forgiving. It keeps prompting until you
provide either the correct answer or QUIT.

http://www.jes.com/pb/pb_wp5.html (4 of 5) [8/21/2000 10:49:29 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 5

REVIEW QUIZ 3

1) Why is precedence important?
2) What is the difference between the REM statement and the REM function?
3) What does the RND function do?

4) What is wrong with the following program samples and how may they be corrected?

a) IF ANS = "Y" THEN PRI NT "YES' END ELSE PRI NT " NO'

b) IF ANSWER > 0 THEN
PRI NT "ANSWER | S > 0"
ELSE
PRI NT "ANSWER | S < 0"
END

c) IF ANSVER = "N' THEN
PRI NT "ENTER ALTERNATE VALUE"
| NPUT ALTERNATE. VALUE

| F ALTERNATE. VALUE = "" OR ALTERNATE. VALUE <= 0 THEN
PRI NT "MJST BE A NUMBER OR POSI TI VE !'"
END

#previous chapter M Next chapter & Top

Copyright © 1985-2000 Jonathan E. Sisk. It is against the law to reproduce or distribute this work in any
manner or medium without written permission of the author, c/o JES, Inc., P.O. Box 19274, Irvine, CA

92623, phone (949) 553-8200, fax (949) 553-9779, email: |sisk@jes.com.

http://www.jes.com/pb/pb_wp5.html (5 of 5) [8/21/2000 10:49:29 PM]

mailto:jsisk@jes.com
http://www.jes.com/
mailto:jsisk@jes.com

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 6

Jonathan E. Sisk's
Pick/BASIC: A Programmer's
Guide

Chapter 6
String-Handling Intrinsic
Functions

In program example 4, more of the intrinsic functions are discussed, along with some programming
techniques for optimizing program code. Topics, statements and functions covered include EQU,
EQUATE, CHAR, COUNT, DCOUNT, SLEEP, SEQ, and STR.

Enter Programming Example 4, shown in Fig. 6-1.

THE EQUATE (EQU) STATEMENT

It isnormal to place assignment statements at the beginning of the program. The EQUATE statement is
also used to assign constants:

009 EQUATE ATTRI BUTE. MARK TO CHAR(254)
010 EQUATE VALUE. MARK TO (CHAR(253))
011 EQUATE SUB. VALUE. MARK TO CHAR(252)
012 EQUATE CLEAR. SCREEN TO CHAR(12)
013 EQUATE BELL TO CHAR(7)

014 EQUATE TRUE TO 1

015 EQUATE FALSE TO 0

Naturally, there are some technical differences between assignment and the EQUATE statement. For
example, the statement

EQUATE BELL TO CHAR(7)

Does apparently the same thing as.
BELL = CHAR(7)

The net effect isthe same; that is, the constant BELL is assigned the value of the decimal character 7. It
may be used to generate an audible "beep" by using the statement:

http://www.jes.com/pb/pb_wp6.html (1 of 8) [8/21/2000 10:49:31 PM]

http://www.jes.com/gifs/adsnstuf/pb2bl.jpg

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 6

PRI NT BELL

Fig. 6-1. Program Example 4.
>ED BP EX. 004

TOP

Al

001 * EX 004

002 * DEALING W TH DELI M TERS AND OTHER STRI NG FUNCTI ONS
003 * mmidd/yy: date last nodified

004 * JES. author's initials

005 *

006 * DEFI NE STANDARD CONSTANTS

007 *

008 PROWPT ":"

009 EQUATE ATTRI BUTE. MARK TO CHAR(254)

010 EQUATE VALUE. MARK TO CHAR(253)

011 EQUATE SUB. VALUE. MARK TO CHAR(252)

012 EQUATE CLEAR. SCREEN TO CHAR(12)

013 EQUATE BELL TO CHAR(7)

014 EQUATE TRUE TO 1

015 EQUATE FALSE TO 0

016 *

017 * GET SENTENCE FOR COUNT AND DCOUNT TEST
018 *

019 PRI NT

020 PRINT "ENTER A SENTENCE OF ABOUT 10 TO 15 WORDS'
021 | NPUT SENTENCE

022 | F SENTENCE = "QUI T" THEN STOP

023 *

024 * TRIM EXTRA SPACES FI RST

025 *

026 SENTENCE = TRI M SENTENCE)

027 *

028* DETERM NE THE NUMBER OF SPACES
029 *

030 PRI NT

031 PRINT "IN THE SENTENCE, "

032 PRI NT SENTENCE

033 PRI NT

034 PRINT " THERE ARE " : COUNT(SENTENCE," ") : " SPACES"
03554

036 * DETERM NE THE NUMBER OF WORDS

037 *

038 PRI NT

http://www.jes.com/pb/pb_wp6.html (2 of 8) [8/21/2000 10:49:31 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 6

039
040
041
042

043
044
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073

PRI NT "AND, THERE ARE " : DCOUNT(SENTENCE," ") : " WORDS"
*

* PICK A NUMBER OF SECONDS TO SLEEP FOR. ..

PRI NT "ENTER NUVBER OF SECONDS TO SLEEP" : ; | NPUT NAPTI ME
PRI NT

PRI NT "1"M NOW SLEEPI NG FOR " : NAPTIME : " SECONDS"

SLEEP NAPTI ME ; * 7277777777777
*

* GET A CHARACTER FOR SEQ TEST

*

PRI NT

PRI NT "LET'S TEST THE SEQ FUNCTI ON. PRESS ANY KEY "
| NPUT KEY, 1

PRIENM “FRESSEQ-CF "I 2KEY: [#% “¥S F= - SEQFKEY)

PRI NT

*

* GET A CHARACTER FOR THE STR TEST
*

PRI NT

PRI NT "ENTER CHARACTER TO PRINT | N STR FUNCTI ON'
| NPUT CHARACTER

| F CHARACTER = "QUI T* THEN STOP

*

* GET NUMBER OF TIMES TO PRI NT

*

PRI NT "ENTER NUMBER OF TI MES TO PRI NT "
| NPUT NUMBER. OF. TI MES

| F NUMBER. OF. TIMES = "QUI T" THEN STOP

*

* NOW SHOW THE FUNCTI ON

*

PRI NT "HERE GOES..."

PRI NT STR(CHARACTER, NUVBER. OF. Tl MES)
END

The EQUATE and assignment statements are treated differently, however. The EQUATE form is more
efficient than the assignment statement using the "=" (equals) sign. Thisis due to the fact that the EQU or
EQUATE statement is interpreted during the compilation phase, where the CHAR(7) is evaluated and
object (i.e., executable) code is generated for this constant. This also saves the overhead of maintaining a
variable during runtime, since there is no run-time storage allocation for this constant. (Thisis aso the
way quoted constant text strings are handled.)

With the assignment form BELL=CHAR(7), evaluation occurs at runtime, and a small amount of
overhead is required during the initialization phase of the program. Admittedly this overhead is hardly

http://www.jes.com/pb/pb_wp6.html (3 of 8) [8/21/2000 10:49:31 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 6

noticeable, but any time that there are opportunities to optimize programs, you should jump at the
chance.

Using EQU or EQUATE aso has what could be considered a down side. Once the constant has been
assigned, it may not be changed later in the program. For example, if this instruction appeared near the
top of the program:

EQU VALUE. MARK TO CHAR(253)

and later in the program, this instruction appeared:
VALUE. MARK = CHAR(252)

An error message will appear:
[B121] LABEL ' VALUE. MARK' | S A CONSTANT AND MAY NOT BE WRI TTI EN | NTO

The program stops, leaving you in the PICK/BASIC debugger.

Redlistically speaking, you would never want to change the referenceto VALUE.MARK anyway. That's
why it's called a constant. After all, value marks are always value marks.

THE CHAR FUNCTION

The CHAR function converts a decimal integer into its ASCII equivalent. The ASCII character set is
simply a standardized means of referring to the numeric, aphabetic, punctuation, and control characters.
The same set of program lines that demonstrated the EQUATE statement in the preceding section also
show the use of CHAR():

009 EQUATE ATTRI BUTE. MARK TO CHAR(254)
010 EQUATE VALUE. MARK TO CHAR(253)

011 EQUATE SUB. VALUE. MARK TO CHAR(252)
012 EQUATE CLEAR. SCREEN TO CHAR(12)
013 EQUATE BELL TO CHAR(7)

For example, the standard character to sound the "bell" in your terminal (and some printers) is Control-G.
It would require entering a Control-G into a program to use it in program. Entering control characters
directly into programs should always be avoided! The CHAR function takes care of this potential
problem for you.

It is normal to see a series of assignment statements at the top of a program to define regularly used
variables or constants. For instance:

BELL = CHAR(7)
or
EQUATE BELL TO CHAR(7)

When thisisinterpreted by the compiler, it figures out what the ASCII character equivalent of adecimal
71s, and assignsiit to the variable called BELL. Throughout the rest of the program, whenever a"beep" is
needed, it may be performed with the following statement:

PRI NT BELL

http://www.jes.com/pb/pb_wp6.html (4 of 8) [8/21/2000 10:49:31 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 6
A bell also may be generated simply by issuing this statement:
PRI NT CHAR(7)

However, it is generally considered more efficient to assign the constant BELL at the beginning of the
program rather than referring to CHAR(7) every time it isrequired. This also tends to make the program
more readable.

Example 4 illustrates the most commonly used constantsin PICK/BASIC, listed in Fig. 6-2.

THE COUNT AND DCOUNT FUNCTIONS

The COUNT function was discussed in Example 2. It is used to determine and report the number of
occurrences of a character (or character string) within another string.

This example asks you to enter a sentence of about 10 to 15 words. The COUNT function on line 34
displays the number of spacesin the sentence.

034 PRINT " THERE ARE " : COUNT(SENTENCE," ") :" SPACES"

Consider this, however: Since the space character is being used as a delimiter to separate words, is the
number of spaces displayed an accurate count of the number of words in the sentence?

Probably not. The number of spaces is one less than the number of words in the sentence. Thisis an
extremely important principle. When you are trying to determine the number of objects by counting the
delimiters that normally separate these objects, an allowance has to be made for correcting the oversight.
In other words, 1 (one) must be added to the final result, but only when the string being counted is not
null. That brings usto the DCOUNT function:

039 PRINT "AND, THERE ARE " :DCOUNT(SENTENCE, " ") :" WORDS "

Const ant nane Deci mal equival ent Assigned with
ATTRI BUTE. MARK 254 CHAR(254)
VALUE. MARK 253 CHAR(253)
SUB. VALUE. MARK 252 CHAR(252)
CLEAR. SCREEN 12 CHAR(12)
BELL 7 CHAR(7)
ESCAPE 27 CHAR(27)

Fig. 6-2. Commonly used constants.

The DCOUNT function behaves exactly like the COUNT function, but with one minor difference: it
corrects for the fact that the character being counted is being treated as a delimiter and adds 1 to the
result. In other words, the DCOUNT function determines the number of data items delimited by the
given string, where COUNT determines the number of occurrences of the given string.

This normally happens when counting the number of attributes in an item, or the number of values within
an attribute, or the number of subvalues within avalue. It returns a zero only when counting a null string.
Figure 6-3 illustrates the various effects of the COUNT and DCOUNT functions. (Note that the "]"

http://www.jes.com/pb/pb_wp6.html (5 of 8) [8/21/2000 10:49:31 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 6

character represents a value mark.) Note also that this DCOUNT statement works correctly only because
we trimmed the string (using TRIM) before performing the DCOUNT.

THE SLEEP STATEMENT

The SLEEP (or aternately RQM) statement is used to put a process "to sleep” for a certain period of
time:
046 SLEEP NAPTI ME S)L ATy T

Thisisuseful for process control, like running a FILE-SAVE at a certain time, or when you fed like
annoying your data entry operators. Note: Some implementations of Pick automatically disable the break
key when the SLEEP statement is executed.

STRI NG | nstructi on Resul t
"abc] def] ghi " COUNT(STRI NG, VALUE. MARK) 2
DCOUNT(STRI NG, VALUE. MARK) 3
"abc] def " COUNT(STRI NG, VALUE. MARK) 1
DCOUNT(STRI NG, VALUE. MARK) 2
"abc" COUNT(STRI NG, VALUE. MARK) 0
DCOUNT(STRI NG, VALUE. MARK) 1
(null) COUNT(STRI NG, VALUE. MARK) 0
DCOUNT(STRI NG, VALUE. MARE) 0

Fig. 6-3. Effects of the COUNT and DCOUNT functions.

There are two ways to put a process to sleep. The first is when the numeric expression following the
SLEEP statement contains a number. For instance:

SLEEP 300

The number defines, in seconds, the length of program inactivity. This statement tells the PICK/BASIC
program to sleep for 5 minutes. The second form consists of making the expression following the SLEEP
statement contain atime in "military" (24-hour) format. For example:

SLEEP 23: 59

This leaves awake-up call for 11:59 P.M.
NAPTI ME=RND(10) +3

The RND (random) function is used in this example to generate a random number between 0 and 9, and
then to add 3 to the result. Thiswill set up in a naptime of 3 to 12 seconds. Don't worry about being quiet
around a sleeping terminal. (It sometimes takes a system crash to wake them up.)

http://www.jes.com/pb/pb_wp6.html (6 of 8) [8/21/2000 10:49:31 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 6

RESTRICTIONS ON THE INPUT STATEMENT

Normally when an INPUT statement is executed, up to 140 characters may be entered before pressing the
Return key. The reason that 140 characters are allowed is because that happens to be the length of the
Primary Input Buffer on most Pick systems. The INPUT statement also allows the name of the variable
that receives input to be followed by an expression which evaluates to a number:

052 | NPUT KEY, 1

This indicates the maximum number of characters that will be accepted by the INPUT statement. What's
more, when the designated number of charactersis received, the program automatically issues a carriage
return, whether or not the operator is ready.

In this example, the INPUT statement waited for one character to be entered prior to continuing
execution. Any key which produces output is adequate. Some keys on the keyboard, like the Shift and
Control keys, don't actually generate "output,” so the INPUT statement is unable to detect that input has
been provided. By the way, if you're looking for the "any" key, you won't find it. Simply press the space
bar.

As a suggestion, don't use the length parameter because of the inconsistencies that it imposes on the
operator. (Sometimes it does carriage returns for you, and sometimes it doesn't.)

THE SEQ FUNCTION

The SEQ function is exactly the opposite of the CHAR function covered earlier in this example. It
produces the decimal equivalent of any ASCII character:

053 PRINT "THE SEQ OF " : KEY: " IS " : SEQKEY)

For example, if you were to pressthe A" key on your keyboard at the"... PRESS ANY KEY "prompt, it
prints the message that the sequence of "A" is 65. Thisfunction is useful for situations like determining if
acontrol character has been entered. Control characters have decimal values in the range 1 to 31, and all
characters above 127 are Pick control characters.

THE STR FUNCTION

The STR function is used to generate or print astring of characters of a predetermined length. In
Program Example 4, line 72, it displays such a string based on operator input:

072 PRI NT STR(CHARACTER, NUMBER. OF. Tl MES)

If an asterisk and the number 20 had been entered at the appropriate prompts, line 72 would be
equivalent to:

PRI NT STR("*" , 20)

and arow of 20 asterisks would be sent to the screen or printer. This technique is much more efficient
than printing the row of asterisks asaliteral:

PRI NT Whkkkk k), k k k k *,* *,*,*,*,*,k*,k%x"

http://www.jes.com/pb/pb_wp6.html (7 of 8) [8/21/2000 10:49:31 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 6

If there's no other reason, at least you won't have to find a pencil and count the characters on your screen
or program listing. It also saves object code space.

Admittedly, thisis more a programmer efficiency technique than a program efficiency consideration.
(Sometimes the issue of program maintenance efficiency overrides the run-time efficiency
considerations.)

By the way, the STR function may be used to generate a string of spaces, just like the SPACE function.
For example:

PRI NT STR(" ", 25)

IS the same as saying:
PRI NT SPACE(25)

Using the STR function, however, isless efficient than the SPACE function when generating strings of
spaces.

REVIEW QUIZ 4

1. What advantage does the EQUATE statement have over an assignment statement using the "="
sign?
2. Which of the following statements is more efficient?

EQU CLEAR SCREEN TO CHAR(12)
CLEAR. SCREEN = CHAR(12)

What is the difference between the COUNT and DCOUNT statements?
What does the SLEEP statement do?

What statement puts a process to sleep for 10 minutes?

What statement puts a process to sleep until 5:30 P.M.?

What does the SEQ function do?

What does the STR function do?

What instruction prints arow of 10 "-" (hyphen) characters?

© N O~ W

#previous chapter M Next chapter & Top

Copyright © 1985-2000 Jonathan E. Sisk. It isagainst the law to reproduce or distribute this work in any
manner or medium without written permission of the author, c/o JES, Inc., P.O. Box 19274, Irvine, CA
92623, phone (949) 553-8200, fax (949) 553-9779, email: [sisk@jes.com.

http://www.jes.com/pb/pb_wp6.html (8 of 8) [8/21/2000 10:49:31 PM]

mailto:jsisk@jes.com
http://www.jes.com/
mailto:jsisk@jes.com

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 7

e Jonathan E. Sisk's
el Pick/BASIC: A Programmer’s
LAs S G Lide
\ \\\\ 3 WWW Edition January, 2000

\ \ Chapter 7
Data Conversion and Print

B |\ asKi ng

In this example. the principles of converting and formatting are covered. Topics, statements, and
functions covered include print (format) masking, GOTO, ICONV, OCONV(D,MT), SPACE, DATE(),
TIME(), and TIMEDATE().

Enter Program Example 5, shown in Fig. 7-1.

THE ICONV FUNCTION

The ICONV function is used to convert data from its external format to itsinternal format. To explain
external versusinterna isrelatively easy; external format is the form in which a piece of datais readable
to humans; internal format, as briefly introduced in Chapter 1, most often makes sense only to the
computer.

Notice that the ICONV function has two arguments. The first argument is the string of numbers or
characters that are to be converted. The second argument is the conversion code. One example of a
conversion code isthe date, or "D" conversion:

027 | NTERNAL. Bl RTHDAY = | CONV(Bl RTHDAY, "D")

The Pick System stores datesin an internal format which is a number representing the number of days
that have elapsed since December 31, 1967. (Day zero on the Pick Calendar). Every night at midnight, a
counter isincremented by 1. Consequently, if you wereto find an item in afile which had the number
7777 stored in an attribute, it could be adate in internal format, or an amount of money, or a street
address. The only person who knows for sure is the programmer who put it there.

Fig. 7-1. Program Example 5.

001 * EX. 005
002 * PRI NT MASKI NG | NTERNAL AND EXTERNAL CONVERSI ONS
003 * mm dd/yy: date |ast nodified

http://www.jes.com/pb/pb_wp7.html (1 of 8) [8/21/2000 10:49:37 PM]

http://www.jes.com/gifs/adsnstuf/pb2bl.jpg

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 7

004 * JES:. author's initials

005 *

006 PROWPT ":"

007 *

008 * GET FI RST AND LAST NAME

009 *

010 PRI NT

011 PRI NT "ENTER YOUR FI RST NAME :

012 | NPUT FI RST. NAME

013 IF FIRST. NAME = "QUI T" THEN STOP

014 *

015 PRI NT

016 PRI NT "ENTER YOUR LAST NAME "

017 | NPUT LAST. NAME

018 I F LAST. NAME = "QUI T THEN STOP

019 *

020 * GET Bl RTHDAY

021 *

022 LOOP

023 PRI NT

024 PRI NT "ENTER YOUR Bl RTHDAY (Mt DD- YY) "
025 | NPUT Bl RTHDAY

026 | F Bl RTHDAY = "QUI T* THEN STOP

027 | NTERNAL. Bl RTHDAY = | CONV(BI RTHDAY, "D")
028 UNTI L | NTERNAL. Bl RTHDAY # "" DO

029 PRI NT " SEPARATE MONTH DAY AND YEAR W TH DASHES! "
030 REPEAT

3=

032 * NOW LET'S SHOW OFF

033 *

034 PRI NT

035 PRI NT "HELLO THERE " : FI RST. NAME

036 PRI NT

037 PRI NT "THE CURRENT DATE IS ": OCONV(DATE(),"D2/")
038 PRINT "THE CURRENT TIME IS ": OCONV(TI ME(), " MIH")
039 PRI NT

040 PRINT "I F YOU VERE BORN ON " : Bl RTHDAY :
041 PRINT ", THEN THE DAY OF THE WEEK WAS "
042 PRI NT OCONV(| NTERNAL. BI RTHDAY, " DWA")

043 PRINT "THI S WAS DAY " : OCONV(| NTERNAL. Bl RTHDAY, "DJ")
044 PRINT " OF THE YEAR "

045 PRI NT

046 PRI NT "THAT MAKES YOU " : DATE() - | NTERNAL. Bl RTHDAY :
047 *

048 * GET NUMBER FOR SPACE TEST

049 *

http://www.jes.com/pb/pb_wp7.html (2 of 8) [8/21/2000 10:49:37 PM]

DAYS OLD!

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 7

050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072

Users see only the output of all the work performed by the computer. Now that you are the programmer,

PRI NT

PRI NT "LET'S TEST THE SPACE FUNCTI ON. "

LOOP

PRI NT "ENTER A NUMBER BETWEEN 5 AND 20 "

| NPUT YOUR. NUMBER

UNTI L NUM YOUR. NUMBER) OR YOUR NUMBER = "QUI T" DO REPEAT
| F YOUR. NUMBER = "QUI T" THEN STOP

*

* SHOW FI RST AND LAST NAVE W TH SPACES BETVEEN

*

PRI NT

PRINT "HERE' S YOUR NAME WTH " : YOUR NUMBER " ENMBEDDED SPACES'
PRI NT FI RST. NAVE: SPACE(YOUR NUMBER) : LAST. NAME

*

* SHOW TI MEDATE() AND MASKI NG

*

PRI NT

PRINT "HERE' S TI ME AND DATE LEFT JUSTI FI ED I N 40 SPACES"
PRINT "*" : Tl MEDATE() "L#40" : "*"

PRI NT

PRI NT "HERE'S TI ME AND DATE RI GHT JUSTI FI ED I N 40 SPACES"
PRI NT "*": TI MEDATE() "R#40": "*"
END

you need to know what type of datawill be received in a program, because you have to make sure that
the data is converted to its proper internal format. Otherwise, many strange things may occur.

With thisfirst example, the ICONV statement is used to take the BIRTHDAY variable and convertsiit
with the D (for "Date") conversion. Thistakes care of the "internal number of days" calculation, so it

produces one of two results: Either the number of days since 12/31/67 if the dateis"valid,” or anull if it

is determined to be "invalid." In the Pick System, adate is considered valid if it is received with
consistent delimiters between the month, day and year. A dateisinvalid if the conversion fails.

Here are some valid dates for the date conversion function:

Lo
derle.
01/ 0

97
97
1/ 1997

01 JAN 97
1JAN1997

(Note that leading zeros are optional .)

Now here are two invalid dates for the date conversion function:

1197
0101

97

http://www.jes.com/pb/pb_wp7.html (3 of 8) [8/21/2000 10:49:37 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 7

The reason they are considered invalid is that they already appear to be in internal format.

The same set of conversion codes that are available to ACCESS are also available to PICK/BASIC. The
conversions used most often are covered in this book.

Here's what happens when a date is convened from its external format to itsinternal format:

Ext er nal Dat e
For mat Conver si on
12/ 12/ 97 D

12 DEC 1997 D2

Resul t
Pr ovi ded
10939
10939

Figure 7-2 illustrates the various date conversions that may be applied to internal dates.

There are many benefits in storing dates thisway. First, it makes sorting easier because it's easy to
compare two numbers to see which is greater. Second, it makes performing cal cul ations on dates much
easier. This might not seem significant until you have to figure out your own algorithm for calculating
what 90 days is from any particular date. Finally, it is more efficient, in terms of storage, than its externa
counterpart.

On line 28, the contents of the variable, INTERNAL.BIRTHDAY, is examined to determineif it is null,
which indicates that the internal conversion process failed. A valid external format is one in which the
month, day, and year are each separated by any consistent non-numeric character. If the variableis
determined to be null, then the response entered is definitely not a date, so a message is displayed and the
birthday is again requested.

| nt er nal

For mat

10939
10939
10939
10939
10939
10939
10939
10939
10939
10939
10939

(julian date)
(nunmeric nont h)
(al pha nont h)
(nuneric day/ week)
(al pha day/ week)
(4 digit year)
(quarter)

Dat e
Conver si on

Fig. 7-2. Sample external date conversions.

Resul t

12 DEC 1997
12/ 12/ 97
12-12- 97
12-12-1997
346

12
DECEMBER

5

FRI DAY
1997

4

On the other hand, if thereisavaluein INTERNAL.BIRTHDAY, then program execution continues
from line 31.

http://www.jes.com/pb/pb_wp7.html (4 of 8) [8/21/2000 10:49:37 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 7

THE OCONYV, DATE, AND TIME FUNCTIONS

The OCONV statement is exactly the opposite of the ICONV statement. It takes datain its internal
format and convertsit to external format, using the same set of conversion codes available to the ICONV
function and the ACCESS retrieval language:

037 PRINT "THE CURRENT DATE IS ": OCONV(DATE(),"D2/")

A reserved system function, called DATE(), retrieves the current system date in itsinternal format. On
line 37, the system date is retrieved and output converted using the "D2/" conversion. This takes the date
and formats it in the form mm/dd/yy. Note for European readers. Many versions of Pick allow the date
format to be "toggled" to European format, which this conversion formats as dd/mm/yy.

Time, like dates, is also stored in an internal format representing the number of seconds that have el apsed
since midnight. This provides many of the same benefits as the date conversion, particularly with doing
calculations:

038 PRINT "THE CURRENT TIME IS ": OCONV(TIME(), " MIH')

Figure 7-3 illustrates what happens when atime is converted from its external format to itsinternal
format, as well as the various time conversions that may be applied to internal times.

On Line 38 of the example, the message, "THE CURRENT TIME IS ", displays, followed by the current
time in the format hh:mmAM or hh:mmPM, depending on whether or not you are doing this before or
after lunch.

Ext er nal

f or nat Conver si on Resul t

12: 30 MT 45000

10: 00 MT 36000

| nt er nal

f or mat Conver si on Resul t
61200 MT 17: 00
61200 MI'S 17:00: 00
61200 MIH 05: 00PM
61200 MIHS 05: 00: OOPM

Fig. 7-3. Time conversions.

Using OCONV with Dates

Once adate is converted to itsinternal equivalent, it may be output formatted with any of the many types
of date conversions. This statement takes the INTERNAL.BIRTHDAY variable and convertsit to the
external format using the DWA conversion, which spells out the day of the week:

http://www.jes.com/pb/pb_wp7.html (5 of 8) [8/21/2000 10:49:37 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 7

042 PRI NT OCONV(| NTERNAL. Bl RTHDAY, " DWA")

Line 43 does the same with the DJ conversion, which returns the date in its Julian date format. The Julian
date is the sequential number of the day within the year. For example, January 15 is the 15th day of the
year and February 15 isthe 46th day. Thisis how you may calculate the number of shopping days |l eft
until Christmas. Just for fun, the program to do just that is provided in Appendix C. It's called EX.005A.

Performing Calculations with DATE

On line 46, your age in days is calculated and displayed. Thisis done by taking the internal system date,
DATE(), and subtracting your birthday, which is stored in INTERNAL. BIRTHDAY . Incidentally, days
before December 31, 1967 (day zero on the Pick calendar) are stored internally as negative numbers.

THE SPACE FUNCTION

The SPACE function is used to produce or display a string of spaces. The number of spacesis
determined by the result of the numeric expression, in this case, the number you entered into
YOUR.NUMBER:

062 PRI NT FI RST. NAME: SPACE(YOUR. NUMBER) : LAST. NAME

If the value of YOUR. NUMBER were 15, for example, the statement would be equivalent to:
PRI NT SPACE(15)

This prints 15 spaces at the current cursor or printer position.

The SPACE function comes in handy when formatting output on reports and screens. (Another way of
doing output formatting is through the use of print masks, to be discussed shortly.)

THE TIMEDATE FUNCTION

When the TIME() and DATE() functions were discussed earlier, it was noted that both of these
functions retrieve their respective current valuesin internal format. The TIMEDATE() function retrieves
the current system time and date in its external format.

For example, the instruction:
PRI NT Tl MEDATE()

produces output in the form:
10:17: 36 12 DEC 1997

Line 68 of Program Example 5 usesit in this form:
068 PRI NT "*" : TI MEDATE() "L#40" . "*"

http://www.jes.com/pb/pb_wp7.html (6 of 8) [8/21/2000 10:49:37 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 7

PRINT (FORMAT) MASKING

Print masking is the process of taking an expression and presenting it in a particular output format,
typically either left- or right-justified. Print masks are composed of several elements: the justification
indicator, a"fill" or "pad" character, and a number to indicate the length of the output.

068 PRI NT "*" : Tl MEDATE() "L#40" : "*"

Together, these three elements comprise a print mask. The print mask immediately follows the
output-producing expression that it isto format.

The justification is usually either an L for left-justified or R for right- justified. Some systems
additionally support extra justification codes, such as D for date justification, which effectively produces
the same result as an OCONYV function; only the L and R are covered here.

The second of the three elementsis the single character to "pad"” the output. There are three "standard"
characters available:

* Fills output with asteri sks.
Fills output wth blanks.
% Fills output with zeros.

The third and final element of the print mask expression is an integer number which indicates the
maximum length of the output.

On line 68, an asterisk (*) isdisplayed. Thisisto indicate the beginning position of the output. It is
immediately followed by the current system time and date, produced with the TIMEDATE() function.
Notice that the output is displayed |eft-justified in afield of 40 blanks and followed immediately by
another asterisk to indicate the "end" of the output.

This appears as:
*08: 15: 34 12 DEC 1997 5

Online 71, an asterisk is displayed, followed by the current system time and date, right-justified in a
field of 40 blanks, followed by another asterisk. This appears as.

* 08:15:34 12 DEC 1997~

Here's a very important note about print masking: Did you notice that there is no character, other than an
optional space, between the expression being printed and the mask expression? Thisis extremely
important, because it directs the program to treat the "first" expression as an object of the "second"
expression, which is considered a"masking" expression. Shown below are correct and incorrect use of
print masking:

PRINT "*" : "H THERE " "L#15" : "*"
outputs
*H THERE 5

whereas, the statement:

http://www.jes.com/pb/pb_wp7.html (7 of 8) [8/21/2000 10:49:37 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 7

PRI NT "*" : "H THERE" : "L#15" : "*"

outputs
H THEREL#15

Not exactly what you wanted ...

The moral of this story isthat you may use print masking anytime you need it, but remember to separate
the expression being printed from its mask expression with only a space, or, of course, the ever-popular
null.

REVIEW QUIZ 5

1) What doesinternal format mean? What does external format mean?

2) What instruction and conversion code is required to convert adate from its external format to its
internal format?

3) Suppose you have avariable called BILL.DATE. Inthisvariable is the value "12-12-1999." How
could you find out what day of the week it was? If this bill were due in 30 days, how could you
determine when it should be paid?

4) What instruction and conversion prints the system time in its external format?
5) What does the SPACE function DO?
6) What is print masking?

7) What output do the following examples produce?

PRI NT " NAME" "L#15" : " ADDRESS"
PRI NT "123" "R#8": "456" "R#8"
PRI NT " NAME" : "L#15" : " ADDRESS"

8) What function retrieves the current system time and date?

9) How do you really know when you are a programmer?

#previous chapter M Next chapter & Top

Copyright © 1985-2000 Jonathan E. Sisk. It is against the law to reproduce or distribute thiswork in any
manner or medium without written permission of the author, c/o JES, Inc., P.O. Box 19274, Irvine, CA
92623, phone (949) 553-8200, fax (949) 553-9779, email: |sisk@jes.com.

http://www.jes.com/pb/pb_wp7.html (8 of 8) [8/21/2000 10:49:37 PM]

mailto:jsisk@jes.com
http://www.jes.com/
mailto:jsisk@jes.com

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 8

G Jonathan E. Sisk's
S Pick/BASIC: A Programmer's
. Guide

\ \\\\ 3 WWW Edition January, 2000

\ \ Chapter 8
Numeric Data Conversion and

"1.
LRI

S] Output Routing

In program example 5, two of the types of information were discussed that must be converted internally
before they are stored. The third, and perhaps most common, type of datathat requires internal
conversion is money.

There's an important rule for you to commit to memory here:
Money is always stored internally asthe number of pennies!

That's because the Pick report writer, ACCESS, needs it thisway. So, in Example 6, the conversion
process for handling dollar amounts is covered.

In all of the preceding examples, each PRINT statement that was used to output aliteral, variable, or
expression to the screen simply printed at the next available screen line. In other words, no special screen
formatting took place. Example 6 illustrates formatting screens using a set of PICK/BASIC intrinsic
functions. Additionally, the MC and MR conversion cedes are introduced. Topics, statements, and
functions covered include the "@" function, ICONV, and OCONV (MR/MC).

Using the listing in Fig. 8-1, enter Program Example 6.

Fig. 8-1. Program Example 6.

001 * EX. 006

002 * TERM NAL OUTPUT FORMATTI NG MONEY CONVERSI ONS
003 * mm dd/yy: date |ast nodified

004 * JES. author's initials

005 *

006 PROWPT "-"

007 *

008 PRINT @-1): @15,0): "EXAMPLE 6": @58, 0): TI MEDATE()
009 *

http://www.jes.com/pb/pb_wp8.html (1 of 9) [8/21/2000 10:49:42 PM]

http://www.jes.com/gifs/adsnstuf/pb2bl.jpg

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 8

010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055

* GET FI RST NAME

LOOP

PRINT @5,3): "FIRST NAME': @35,3): STR(" ",25): @35, 3):
| NPUT FI RST. NAME, 25

UNTIL FIRST. NAME # "" DO REPEAT

| F FIRST. NAVE = "QUI T" THEN STOP

*

* GET LAST NAME
*

LOOP

PRINT @5,5): "LAST NAME': @35,5): STR("_",25): @35,5):
| NPUT LAST. NAMNE, 25

UNTI L LAST. NAVE # "" DO REPEAT

| F LAST. NAME = "QUI T" THEN STOP

*

* PUT NAMES TOGETHER AND CONVERT TO UPPER AND LOWER CASE
*

WHOLE. NAME = FIRST. NAVE : " " : LAST. NAME

WHOLE. NAVE = OCONV(WHOLE. NAVE, " MCT")

*

* GET ANNUAL SALARY

*

LOOP

PRINT @5,7): "ANNUAL SALARY': @35,7): STR(" ",9): @35,7):
| NPUT SALARY, 9

UNTI L SALARY = "QUI T" OR NUM SALARY) DO REPEAT

| F SALARY = "QUIT" THEN STOP

*

* GET NUMBER OF PAYCHECKS
*

LOoP

PRINT @5,9) : "HOW MANY PAYCHECKS DO YOU GET EACH YEAR?"
PRINT @5,10): "ENTER A NUVBER BETVEEN 1 & 52": @-4):

| NPUT CHECKS

UNTI L (CHECKS >= 1 AND CHECKS <= 52) DO REPEAT

| F CHECKS = "QUI T" THEN STOP

*

PRINT @5, 11): "THANKS. NO MORE QUESTI ONS"
*

* START CALCULATI ONS
*
| NTERNAL. SALARY
PAYCHECK. AMOUNT
*

| CONV(SALARY, "MR2") ; * CONVERT
| NTERNAL. SALARY / CHECKS; * CALC. AMI

* PRI NT PSEUDO- CHECK

http://www.jes.com/pb/pb_wp8.html (2 of 9) [8/21/2000 10:49:42 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 8

056 *
057 PRINT @5,15): STR("*",50) ; * PRINT STARS
058 PRINT @10, 16): "CHECK 123" "L#20": ; * PRI NT CHECK #

059 PRI NT "DATE' : OCONV(DATE() ,"D') : * TODAY' S DATE
060 PRINT @10,17) : "PAY TO THE ORDER OF":

061 PRI NT WHOLE. NAME ; * PRI NT NAME

062 PRINT @10, 18) : "THE AMOUNT OF" :

063 PRI NT OCONV(PAYCHECK. AMOUNT, " MR2, $*15") : * EXTERNAL AMI
064 PRINT @5, 19): STR("*", 50)

065 *

066 * DONE.

067 *

068 PRI NT

069 END

THE @ FUNCTION

There are a nunber of special cursor control functions in PlICK/ BASIC
These include a function that positions the cursor to a specific
coordinate on the screen and a function that clears the screen. Each
of these functions is enclosed in a set of parentheses and is preceded
| mredi ately by the @("at") character.

008 PRINT @-1) : @15, 0) :"EXAMPLE 6" : @58,0) : TI MEDATE()

The @functions produce a string of characters. This string is nost
often printed imedi ately, but it may also be stored in a variabl e.
Multiple @functions nay be concatenated, just |ike any other string.
Figure 8-2 lists the nost comon functions used in conjunction with
the PRINT statenent. A nore conplete |isting appears in Appendi x B.
Line 8 of the exanple does the followng: First, it clears the screen,

using @- 1).

It then noves the cursor to column position 15 on screen line (row) O,
the top of the screen.

Functi on Descri ption

@-1) Cl ears the screen.

@ - 3) Clears fromthe current cursor position to
the end of the screen.

@-4) Clears fromthe current cursor position to
the end of the current I|ine.

@x,Y) Positions the cursor at colum (horizontal

axis) "x" on row (vertical axis) "y".

Fig. 8-2. Commonly used "@ functions.

http://www.jes.com/pb/pb_wp8.html (3 of 9) [8/21/2000 10:49:42 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 8

Next, it outputs "EXAMPLE 6" at the current cursor position, then
noves the cursor to position 58 on screen line 0, where it next
outputs the current systemtine and date.

Line 13 noves the cursor to position 5 on screen line 3, displays the
pronpt "FIRST NAME," then noves the cursor to position 35 on screen
line 3, where it outputs a string of 25 " " (underscore) characters.
It then noves the cursor back to position 35 on screen |line 3.

CONCATENATION

On Line 28, the two variables you had entered earlier, FIRST. NAME and
LAST. NAME, are joined together (concatenated), separated by a space.
The joined string is then stored in the vari abl e WHOLE. NAMVE:

028 WHOLE. NAME = FI RST. NAME : " " : LAST. NAMVE

This is done because, on the next |ine of code, a conversion on the
entire string is perforned.

Figure 8-3 shows two exanples of concatenation. Effectively, these two
exanpl es produce the sanme output. In Case 1, the vari abl es are out put
in five separate PRINT statenents. In Case 2, the variables are

concat enat ed together and then output in one PRINT statenent. There
are several different schools of thought as to which of these is nore
efficient; | suggest that you use the one wth which you feel nore
confortable.

CHARACTER MASKING WITH THE OCONV
FUNCTION

So far, you have seen the conversions for dates and tinmes. A unique
conversion, called the "MC'" (for "Mask Character"), allows various
conversions on al phabetic and/or nuneric strings. For exanple, the
"MCT" conversion converts the first al phabetic character in each word
of a string to its uppercase form

029 WHOLE. NAME = OCONV(WHOLE. NAME, " MCT")

Case 1:

001 PRI NT NAME "L#20":
002 PRI NT ADDRESS " L#25"
003 PRINT CTY "L#20" :
004 PRI NT STATE " L#10"

http://www.jes.com/pb/pb_wp8.html (4 of 9) [8/21/2000 10:49:42 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 8

005 PRI NT ZI P "L#11"
Case 2:

001 PRI NT. LI NE
002 PRI NT. LI NE
003 PRI NT. LI NE

NAME " L#20"

PRI NT. LI NE : ADDRESS " L#25"
PRI NT.LINE : CITY "L#20"
004 PRI NT.LINE = PRINT. LINE : STATE "L#10"
005 PRINT.LINE = PRINT.LINE : ZIP "L#11"

006 PRI NT PRI NT. LI NE

Fig. 8-3. Exanples of concatenation.

Figure 8-4 illustrates sonme of the MC conversions and their effects on
data. The MCU code converts all of the al phabetic characters to
uppercase. The MCL code converts all of the al phabetic characters to

| onercase. The MCN code retrieves all the nuneric characters fromthe
string, while the MC/N code retrieves all the nonnuneric characters.
Simlarly, the MCA code retrieves all the al phabetic characters
(upper- or lowercase) fromthe string, and the MJ A code retrieves al

t he non-al phabetic characters. Finally, the MCT conversion capitalizes
the first character of each word. Note that this conversion works fine
for OBrien, but not for MDonal d.

MORE ON THE @ FUNCTION

Anot her twist on the @function is shown in |ine 43:
043 PRINT @5, 10) :"ENTER A NUMBER BETWEEN 1 & 52" : @-4):

Note that the |last function directed to the screen before pausing to
wait for user input is the intrinsic function, "@-4)". Its purpose is
to clear fromthe current cursor position (in this case, fromtwo
spaces to the right of the nunber "52") to the end of the line. This
cl eans up any "leftover"” input when and if it is necessary to pronpt
the operator for this information again.

MONEY CONVERSIONS WITH ICONV

In Exanple 5 you exam ned the effect of date and tine conversions.
Here, the noney conversion is introduced. The MR conversion is used to
convert nuneric anounts to their internal equivalents (renenber that
on dollar amounts the internal format represents the nunber of

penni es) :

052 | NTERNAL. SALARY = | CONV(SALARY, " MR2") ; * CONVERT

http://www.jes.com/pb/pb_wp8.html (5 of 9) [8/21/2000 10:49:42 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 8

| nt er nal

f or nat Conver si on Resul t

123 Main Street MCU 123 MAI N STREET
123 MAI N STREET MCL 123 mai n street
123 MAI N STREET MCN 123

123 MAI N STREET MCA MAI NSTREET

123 MAI N STREET MCT 123 Main Street
SEAN O BRI EN MCT Sean O Bri en
VEAGAN MCDONALD MCT Meagan Mcdonal d

Fig. 8-4. MC conversions and their effects on data.

Money anounts are converted to internal format for several reasons.
First, and probably the nost inportant, is the fact that storing this
way can save hundreds of hours in programmng tine, since it allows
nost output reports to be produced with the ACCESS | anguage. (ACCESS
does not work well when the data is not stored in internal format).
Second, many powerful output conversion codes nay be used when witing
Pl CK/ BASI C and/ or ACCESS reports.

The MR conversion has quite a few fornms. It is alnost always foll owed
by a nunber, which indicates the nunber of decinmal positions expected.
This nunber is normally "2" for dollar anmounts. Anot her way of

t hi nki ng about this nunber is that it represents the nunber of
positions that the decinmal point has to nove to the right to convert
this nunber to its internal equivalent. Figure 8-5 illustrates what
happens when nunbers are converted fromexternal to internal format.

Figure 8-6 illustrates sone of the nuneric conversions that may be
applied to internal nunbers. The MR2 conversion places the deci nal
point two positions fromthe right end of the nuneric string; when
"MR2" is followed by a comm, the conversion places the deci mal point
two positions fromthe right end of the nuneric string and puts commas
in every third position to the left of the decimal point. Follow ng
"MR2," with a dollar sign ($) places the deciml point two positions
fromthe right end of the nuneric string and puts conmas in every
third position to the left of the decimal point and precedes the
string wwth a dollar sign.

Ext er nal

f or mat Conver si on Resul t
100. 22 MR2 10022
100. 3 MR2 10030

http://www.jes.com/pb/pb_wp8.html (6 of 9) [8/21/2000 10:49:42 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 8

100 VR2 10000
10 VR2 1000

0 VR2 0
-100. 3 VR2 - 10030
-100. 22 VR2 -10022

Fig. 8-5. Converting noney fromexternal to internal fornmat.

| nt er nal OCONV

f or mat conver si on Resul t
123456789 VR2 1234567. 89
123456789 VR2, 1, 234, 567. 89
123456789 MR2, $ $1, 234, 567. 89

Fig. 8-6. Nuneric conversions that can be applied to internal nunbers.

Using Signcodes in MR Conversions

There are five special codes to activate special features on nuneric
anmounts, four of which are for handling negative nunbers. These
speci al signcodes al ways appear in the sane paranetric position
illustrated in Fig. 8- 7.

The D signcode instructs the conversion processor to output the
literal "DB," for debit, after positive nunbers; the other codes

nodi fy negative nunbers. Conversion B in Fig. 8-7 shows the effect of
not using a signcode on negative nunbers. The C signcode outputs the
literal "CR " for credit, after negative nunbers, and the E signcode
“encl oses" negative anounts in the "< >" angul ar brackets. The M

si gncode "noves" the negative sign, which normally precedes negative
nunbers, to the right end of the nunber. Finally, the N signcode
suppresses the | eading m nus sign on negative nunbers. Yes, this does
make negative nunbers | ook |ike positive nunbers. (There are
applications for this, other than printing totals on profit and | oss
reports for failing conpanies.)

Fill Characters (Format Masking) in MR Conversions

The MR conversion provides a feature which fills the print field with
ei ther bl anks, zeros, or asterisks; this is essentially the sane as
print (format) masking. The three fill operators are:

% For filling with zeros

http://www.jes.com/pb/pb_wp8.html (7 of 9) [8/21/2000 10:49:42 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 8

For filling with bl anks

i For filling with asterisks

| nt er nal OCONV Resul t

f or mat conversi on provi ded
123456789 MR2, D$ $1, 234, 567, 89DB
-123456789 MR2, $ -$1, 234, 567. 89
- 123456789 MR2, C$ $1, 234, 567. 89CR
-123456789 MR2, E$ <$1, 234, 567. 89>
-123456789 MR2, Mb $1, 234, 567. 89-

- 123456789 MR2, N$ $1, 234,567, 89
123456789 MR2, $* 17 ****x$1, 234, 567. 89
123456789 MR2, $* 10 $34, 567. 89

Fig. 8-7. Effects on data of signcodes and format nasks used with the
MR conver si on.

The mask operator nust be preceded by an integer nunber which tells it
t he nunber of characters to pad the field with. For exanple, the
next-to-last line of Fig. 8-7 shows the use of format masks wth the
noney conversion. The only "new' feature added here is the format nmask
itself (*17), which prints the nunber |eft-padded with * characters,
so that the field is exactly 17 character positions w de.

Just for fun, watch what happens when the format nmask is not w de
enough to handl e the nunber being printed, as in the last line of Fig.
8-7. In this exanple, the first two nunbers are truncated because the
nunber being printed is nuch larger than the nask allows for.

On line 52 of Exanple 6, the amount entered into the variabl e SALARY
Is converted to its internal equivalent. Once a nunber is in internal
format, cal cul ati ons nay be perforned or any of the output conversions
just illustrated may be applied.

Li ne 53 cal cul ates the anmount of each paycheck by first taking the

| NTERNAL. SALARY variable and dividing it by the NUVBER OF. PAYCHECKS
variable. This result is then stored, still in internal format, in the
vari abl e PAYCHECK. AMOUNT.

The code on lines 57 through 64 prints a sinulated paycheck on the
screen, using functions and features previously covered. One added
nuance is the treatnent of the output on lines 60 and 61. Line 60
outputs the literal "PAY TO THE ORDER OF "and | eaves the cursor
positioned at the end of this nessage on the screen. It is inportant
to renenber that the colon at the end of the Iine neans to suppress

http://www.jes.com/pb/pb_wp8.html (8 of 9) [8/21/2000 10:49:42 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 8

the carriage return normally printed at the end of a PRI NT statenent

Line 61 externally converts the variable, PAYCHECK. AMOUNT, with the
"MR2, * 15" conversion. It then prints the external anmount at the
current cursor position.

Line 36 displays a string of 50 asterisks at position 5 on |line 15.

REVIEW QUIZ 6

1) What instructions are required to:

A) Clear the termnal screen (two ways):

B) Print "HELLO THERE" on the 15th line at the 3rd position:
C) Cear fromthe cursor position to the end of the |Iine?

2) What instruction is used to input a variable, and to limt the
| nput to six characters?

3) What instruction is used to convert "123456.78" to its internal
format ?

4) What statenent is used to print the external form of the nunber
"5667788" so that it displays in the format $56,677.88?

5) What is concatenation?

6) As an exercise, nodify EX 001 to validate nore closely the nunbers
entered by the operator. Note that this programall ows the operator to
enter negative nunbers. Prevent this from happeni ng.

Hpr evi ous chapt er M Next chapt er =Top

Copyright © 1985-2000 Jonathan E. Sisk. It is against the lawto
reproduce or distribute this work in any manner or nedi um w t hout
witten perm ssion of the author, c/o JES, Inc., P.O Box 19274,

I rvine, CA 92623, phone (949) 553-8200, fax (949) 553-9779, enuil:
jSisk@es.com

http://www.jes.com/pb/pb_wp8.html (9 of 9) [8/21/2000 10:49:42 PM]

mailto:jsisk@jes.com
http://www.jes.com/
mailto:jsisk@jes.com

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 9

Jonathan E. Sisk's
Pick/BASIC: A Programmer's
Guide

Chapter 9
The CASE Statement and
Controlling Switches

In program example 7, avery practical alternative to the IF-THEN statement is introduced: the CASE
statement. Additionally, you will examine the effect of some of the "switches" available. These include
the BREAK key, the ECHO flag, and the PRINTER output flag.

From Fig. 9-1, enter Program Example 7.

THE SUBSTRING (TEXT EXTRACTION) FUNCTION

The sgquare brackets are used to extract a fixed number of characters from a string. This fixed number of
charactersistypically referred to as a substring:

017 IF OPTION[1,1] = "Q THEN STOP ; * SHORTCUT BAI LOUT

If the variable called NAME contained the string "WASHINGTON," for example, executing the
instruction:

PRI NT NAVE[1, 7]
would produce "WASHING". The first numeric argument within the square brackets indicates the

starting position within the string and the second numeric argument refers to the number of charactersto
be retrieved or extracted.

Fig. 9-1. Program Example 7.

EX. 007
001 * EX 007

002 * CASE, BREAK KEY QN OFF, PRI NTER OV OFF, ECHO QN OFF
003 * mmidd/yy: date last nodified

004 * JES. author's initials

005 *

http://www.jes.com/pb/pb_wp9.html (1 of 10) [8/21/2000 10:49:45 PM]

http://www.jes.com/gifs/adsnstuf/pb2bl.jpg

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 9

006 PROWPT ":"

007 *

008 10 * MAI N STARTI NG PO NT AND RETURN PO NT

009 *

010 PRINT @-1) : @20,0) : "EXAMPLE 7": ; * CLEAR SCREEN

011 PRINT @58,0) : TIMEDATE() : . * PRINT TIME AND DATE
012 PRINT @3,3) : "A BREAK KEY TEST": ; * DI SPLAY MENU

013 PRINT @3,5): "B. PRINTER TEST":

014 PRINT @3,7): "C. ECHO TEST":

015 PRINT @3,10) : "ENTER OPTION LETTER OR ' QU T' TO STOP"
016 | NPUT OPTI ON . * GET RESPONSE

017 IF OPTION[1,1] = "Q THEN STOP ; * SHORTCUT BAI LOUT
018 *

019 * MAKE DECI SI ON BASED ON WHAT WAS ENTERED

020 *

021 BEG N CASE

022 CASE OPTION = "A" ; * TEST BREAK ON AND OFF

023 BREAK OFF ; * DI SABLE BREAK KEY

024 PRINT @-1): @10,10): ; * POSI TION FOR MESSAGE

025 PRINT "YOUR BREAK KEY |'S DI SABLED..." ; * TAUNT OPERATOR
026 PRINT @10,12) : "PRESS <CR> WHEN READY ":

027 I NPUT ANYTHING : * AWAI T RESPONSE

028 BREAK ON ; * ENABLE BREAK KEY

029 PRINT @-1) : @10,10) : "BREAK KEY | S WORKI NG AGAI N':
030 PRINT @10, 12) "PRESS <CR> WHEN READY "

031 | NPUT ANYTHI NG

032 CASE OPTION = "B" ; * TEST PRINTER ON, CLOSE, OFF

033 PRINTER ON ; * ENABLE PRI NTER OUTPUT

034 CRT @-1) : @10,10) : "THE PRI NTER FLAG | S NOWON. " :
035 PRINT CHAR(12) : PRINT; PRI NT; * SHOULD GO TO SPOOLER
036 PRINT "PRI NTER TEST | N PROGRESS' ; * DI TTO

037 PRINTER CLOSE : * CLOSE SPOOLER ENTRY

038 PRINTER OFF ; * DI SABLE PRI NTER OUTPUT

039 PRINT @10, 18): "THE PRI NTER FLAG | S NOW OFF"

040 PRINT 8(10,20) : "PRESS <CR> WHEN READY" :

041 | NPUT ANYTHI NG

042 CASE OPTION = "C' : * TEST ECHO ON AND OFF

043 ECHO OFF ; * DI SABLE CHARACTER ECHO

044 PRINT @-1) : @10,10) : "ECHO IS OFF. ENTER YOUR NAME":
045 | NPUT YOUR NAME : * SHOULD NOT APPEAR ON SCREEN

046 ECHO ON ; * ENABLE CHARACTER ECHO

047 PRINT @10,12) : "ECHO IS ON AGAIN, " :

048 PRINT "H THERE, " : YOUR NAME . * PROVE I T'S BACK ON
049 PRINT @10, 14): "ENTER ANYTHI NG' :

050 | NPUT ANYTHI NG

051 CASE 1; * MJST NOT BE A VALI D ANSWER ANNOY OPERATOR NOW

http://www.jes.com/pb/pb_wp9.html (2 of 10) [8/21/2000 10:49:45 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 9

052 PRINT @-1) : @10,10) : "SORRY. NOT WHAT | WANTED"
053 PRINT @10,12) : "PRESS <CR> TO TRY AGAI N "

054 | NPUT ANYTHI NG

055 END CASE

056 GOTO 10 . * START WHOLE THI NG OVER

057 END

On line 17 of the example appeared the statement:
|F OPTION 1, 1] = "Q THEN STOP

Thistells the program to extract only the first character of the variable called OPTION. If it isthe letter
"Q," then the program stops. Otherwise, the program continues at the next line.

This approach simplifies the number of possible responses that you may need to test for when asking
guestions of operators. For example, if the program contained these statements:

PRI NT "DO YOU WANT THI' S REPORT PRINTED ? (Y/N) "

| NPUT ANSVER

| F ANSVER[1, 1] = "Y" THEN PRI NTER ON

It would prevent having to check for al the possible derivatives of the response, "YES." For example:

| F ANSWER = "Y" OR ANSVER = "YES' OR ANSVER = "YUP" THEN PRI NTER ON
Note that on Ultimate systems, the second argument in the substring function defaults to one if omitted.
For instance:

ANSVEER] 1, 1]

produces the same result as
ANSVEER] 1]

THE CASE CONSTRUCT

Y ou have seen the IF-THEN and IF-THEN-EL SE construct in most of the previous examples. The
CASE construct in the example program (Fig. 9- 2) issimilar to a series of |F statements.

021 BEG N CASE

022 CASE OPTION = "A" ; * TEST BREAK ON AND OFF

023 BREAK OFF : * DI SABLE BREAK KEY

024 PRINT @-1): @10,10): ; * POSI TION FOR MESSAGE

025 PRINT "YOUR BREAK KEY |'S DI SABLED..." ; * TAUNT OPERATOR
026 PRINT @10, 12) : "PRESS <CR> WHEN READY ":

027 I NPUT ANYTHING : * AWAI T RESPONSE

028 BREAK ON ; * ENABLE BREAK KEY

http://www.jes.com/pb/pb_wp9.html (3 of 10) [8/21/2000 10:49:45 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 9

029 PRINT @-1) : @10,10) : "BREAK KEY | S WORKI NG AGAI N":
030 PRINT @10, 12) "PRESS <CR> WHEN READY "
031 | NPUT ANYTHI NG

Fig. 9-2. Thefirst CASE condition in Program Example 7.

The CASE construct always begins with the statement BEGIN CASE. This statement generally appears
on alineall by itself. It indicates to the system that a series of CASE statements will follow. The END
CA SE statement terminates the CA SE construct.

The next executable statement after BEGIN CASE must be a CASE statement. The CASE statement has
a structure somewhat similar to the IF statement, in that it is always followed by a conditional
expression. When the conditional expression following a CASE statement evaluates true, all statements
up to the next CASE or END CASE statement are executed.

In line 22 of this example, if the operator entersthe letter "A," then all of the statements up to and
including line 31 are executed. Execution then resumes at line 56, which is the first executable statement
following the END CASE statement.

THE BREAK ON AND BREAK OFF STATEMENTS

The terminal break key may be enabled or disabled under program control:
023 BREAK OFF ;. * DI SABLE BREAK KEY
028 BREAK ON ;. * ENABLE BREAK KEY

Thisis sometimes very important. There are many occasions when programs update multiple files.
Disabling the break key prevents the operator from interrupting the program before all of the files have
been updated, which would |eave some of them updated and others not updated.

To prevent the operator from interrupting program execution by using the break key, use the statement:
BREAK OFF

This turns off the break key, rendering it useless until it is reenabled with the statement:
BREAK ON

At line 23, the break key is disabled, and the operator is then encouraged to go ahead and "giveit atry."
The operator may hammer the break key aslong (or as hard) as he or she wants to, but it won't work.
Even the "last resort” of turning the terminal off and then on again proves useless on most versions of
Pick. After they have exhausted their patience and hit a carriage return to satisfy the INPUT statement on
line 27, the break key is enabled again on line 28 and once again the program suggests trying it.

Thistime it works. The side effect of "breaking" a program is that you are left in the PICK/BASIC
debugger, at the "*" prompt character. (On some implementations of Pick, the program "breaks' into the
debugger when the break key is enabled.) For example, when the break key is pressed, this program
displays:

(br eak)

http://www.jes.com/pb/pb_wp9.html (4 of 10) [8/21/2000 10:49:45 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 9

*128

*

At the* prompt character, enter the letter "G" and press Return. This instructs the program to "Go ahead"
and resume execution exactly where it left off.

An important note about the debugger: There are two waysto get into it. Oneis voluntarily, asyou just
discovered. Under this circumstance, it is OK for you to enter a"G" and have the program continue from
where it left off. The other case of entering the debugger is, of course, involuntarily. This occurs when
you are running programs that encounter a"fatal" error condition, like trying to write to a diskette that is
still initsjacket. A whole section is devoted to using the debugger in Appendix D. For now, you are |eft
with your own intuitive skills for dealing with "fatal" program errors. Two other responses at the
debugger prompt are END (to return control to TCL), and OFF.

GROUP LOCKS AND THE "DEADLY EMBRACE"

Note from the Author, July 5th, 1995: As | converted the original version of this chapter to
Its Web version, | realized that this section is seriously out of date, and will | pick it up on
the rewrite pass. The important thing to remember fromwhat you read here is that all known
current versions of Pick now support item locking, rather than the group-locking scheme
you are about to hear. This makes your life much better.

Everything that has a potential benefit seems to come with some strings attached. Thisis true when
dealing with the break key. The obvious benefit achieved by disabling the break key isin the protection
that it offers to interrupting multiple file updates. The disadvantage occurs in the potential phenomenon
known as "deadly embrace". This situation occurs, albeit rarely, when two processes contend for
information from the same group in afile.

The Pick System scatters data items "across' the file storage area in a method referred to as hashing.
Each fileis created from a contiguous block of frames. The number of contiguous framesis a function of
the modulo that was chosen for the file by the person who created it. The modul o thus specifies the
number of groups that are available to the file. As extra storage space is required for agroup, frames are
automatically linked to the end of each group. This technique provides for automatic file expansion,
which is completely transparent to the user. Unfortunately, it has some potentially serious side effects.

The problem stems from the theory of how items are updated in afile. When anew item is placed into a
file, it isalways placed at the "end" of the group. When an item is updated in a group, the item is
physically "pulled out" of itsold location. All the remaining itemsin the group "shift left" to fill in the
gap created by the departure of the updated item. (It's like stepping out of aline for amovie: your space
isimmediately filled.) The updated item then is put at the end of the group.

While the group is"in motion," that is, "shifting left," there is a danger of another process attempting to
update the group. If a second process does attempt to update the group, it may result in what commonly
has been called a soft Group Format Error. This "transient” GFE is usually self-correcting. It often
displays the terror-inducing message GROUP FORMAT ERROR! and then goes away. What happened
is that once the update by the first process completed, the group returns to a stable condition, where the
second process can now update the group. Realizing this, the second process effectively says " Just

http://www.jes.com/pb/pb_wp9.html (5 of 10) [8/21/2000 10:49:45 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 9
kidding!" and then completes the update. In theory, no datais|ost.
To prevent this potential problem, PICK/BASIC has a provision for avoiding "contention.” It is called

group locks. Group locks are set with any derivative of a READ statement. These are the instructions that
activate group locks:

Regul ar (non-1ocking) form G oup-l ock form
READ READU

READV READVU

MATREAD MATREADU

Once agroup lock has been "set" on agroup, no other process may access that group until the lock is
"released.”, (access, in this definition, means that no other process may retrieve any item from the group
through PICK/BASIC. Non-PICK/BASIC tasks, such as the SAVE process and the ACCESS retrieval
language, are granted access to the data without even noticing the group locks.) Group locks are released
when the item is written with the "normal” form of the appropriate WRITE statement, or when the

REL EA SE statement is executed. Here are more statements which affect the locks:

Regul ar (unl ocking) form G oup- | ock (non-unl ocking) form
VRI TE V\RI TEU

READV VRl TEVU

MATREAD MATWRI TEU

The potential scenario for disaster goes like this: Suppose there are two terminals running programs
which update the same file. The first process reads an item from Group A and sets a group lock. Next,
the second process reads an item from Group B, also setting a group lock. Now, without unlocking the
group lock on Group A, the first process attempts to read an item from Group B, and runs into the group
lock. The terminal running the first process "locks up" and starts beeping. Meanwhile, the second
process- not even aware that the first processis"locked out"--attempts to read an item from Group A.

The second process terminal aso locks up and starts beeping. Neither process may continue until the
other has released the group locks, but they have locked each other out--hence the term "deadly
embrace."

If the break key happens to be disabled at this point, both processes are in deep trouble, since they cannot
be interrupted and "ended" through the PICK/BASIC debugger. Some implementations of Pick provide a
TCL verb called CLEAR-GROUP-LOCKS, which unconditionally resets all of the group locks. Without
having this verb, there are still afew other resorts, one of which istrying to log the locked terminals of f
from athird terminal using the LOGOFF verb. This doesn't always work, especially when the terminals
break keys are disabled. The last resort is a cold start; before doing so, make sure that al the other users
have completed what they are doing and have logged off. This helpsto ensure that al the write-required
framesin real memory have had a chance to be written to disk, thus helping to avoid the possibility of a
hard GFE.

http://www.jes.com/pb/pb_wp9.html (6 of 10) [8/21/2000 10:49:45 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 9

OPTIONS FOR OUTPUT CONTROL

Pick/BASIC offers a number of statements that allow you to specify, under program control, the
destination of program outpuit.

The PRINTER ON Statement

In the second CASE statement, the program checks to see if the letter "B" is requested as the option. If
so, then program execution transfersto line 33, where the PRINTER ON statement is executed:

033 PRINTER ON ; * ENABLE PRI NTER OUTPUT

The PRINTER ON statement directs all output from subsequent PRINT statements to the printer.
Actually, the output first goes to a part of the operating system called the Spooler. Perhaps you've had
some prior experience with the Pick Spooler. If not, issue the command SP-ASSIGN at TCL before
running this example. That sets your output assignment status to "normal." Aslong as you have a printer
and it'sready, thisworks. "Ready" meansthat it is plugged in, turned on, and the "on-line" light is lit.

Incidentally, there is another way of directing output to the PRINTER. In Chapter 2 there was a brief
discussion about the options that are available with the TCL commands used to compile and execute
programs. The RUN command allows a (P) option. This has the same effect asissuing a PRINTER ON
statement at the start of the program. From then on, all of the output from PRINT statements is directed
to the Spooler. For example:

>RUN BP EXAMPLE (P)<cr>

Or, if the program is cataloged, ssmply enter
>EXAMPLE (P) <cr>

The CRT Statement

The CRT statement functions exactly like the PRINT statement but it always directs its output to the
screen, regardless of the PRINTER ON/OFF status. Line 34 clears the screen, then positions the cursor to
position 10 on line 10 and outputs the message "THE PRINTER FLAG IS NOW ON."

034 CRT @-1): @10,10): "THE PRINTER FLAG IS NONON. ":

Line 35 issuesa CHAR(12). On most printers, this causes aform feed. The first statement in a program
that directs output to the printer also displays a message on the screen indicating the Spooler entry (job)
number. This number is assigned automatically by the Spooler. In the example, after sending out the
form feed, three rapid-fire PRINT statements are executed, which output several blank lines at the top of
the report. These are followed by the message "PRINTER TEST IN PROGRESS;," and that completes
the print job.

Note for Ultimate users: The CRT statement may not compile in your program. If not, change the CRT
statement(s) to DISPLAY, which may work.

http://www.jes.com/pb/pb_wp9.html (7 of 10) [8/21/2000 10:49:45 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 9

The PRINTER CLOSE Statement

Once a program starts directing output to the Spooler, the report doesn't actually start printing until the
print job is"closed":
037 PRI NTER CLOSE ; * CLOSE SPOOLER ENTRY

Although the program has printed everything that it was told to, and even though a PRINTER OFF
statement is about to be issued, the printer is not considered closed. It "closes' when one of two things
happens: either a PRINTER CLOSE statement is executed, or the program stops.

The PRINTER OFF Statement

The PRINTER OFF statement resets the status of printer output. This means that the output from
subsequent PRINT statements in the program are directed to the screen, rather than to the Spooler:

038 PRINTER OFF ; * DI SABLE PRI NTER OQUTPUT

The message "THE PRINTER FLAG ISNOW OFF," is displayed and the program pauses to await
input. Upon receipt of input, program execution transfers to line 56, the first executabl e statement after
the END CASE statement.

The ECHO ON and ECHO OFF Statements

Normally, every character that istyped on the keyboard is first sent to the computer to be recognized, and
then is"echoed" back to the screen. The ECHO OFF statement turns off the echo function. Although the
program accepts all the characters that are entered, they are not displayed on the screen.

043 ECHO OFF ; * DI SABLE CHARACTER ECHO

044 PRINT @-1): @10,10) ; "ECHO IS OFF. ENTER YOUR NAME"
045 | NPUT YOUR. NAMVE ; * SHOULD NOT APPEAR ON SCREEN
046 ECHO ON ; * ENABLE CHARACTER ECHO

Typicaly this feature is used when requesting passwords.

At line 44, terminal echo is disabled with the ECHO OFF statement, and you are then asked to enter your
name. Y ou will not be able to see the characters that you type as they are entered. On line 47, the
terminal echo is reenabled with the ECHO ON statement and you are asked to enter something else. The
characters that you type will appear as they are entered.

THE CASE 1 STATEMENT

At thispoint in the logic of the program, it has been determined that the response received is not the
letter "A," nor "B," nor "C." If it had been one of these letters, then the series of statements following the
appropriate CASE statement would have been executed and program execution would have then resumed
at the first executable statement after the END CA SE statement. Since the first executable statement after
the END CASE isthe statement GOTO 10, it causes program execution to go back to the top of the
program, where the menu is displayed.

http://www.jes.com/pb/pb_wp9.html (8 of 10) [8/21/2000 10:49:45 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 9

The CASE 1 statement is the catch-all case. It is generally used as the last CASE statement in aBEGIN
CASE statement. This statement is executed if none of the other conditional expressionsin the other
CA SE statements evaluate to true. If this statement is executed, a message is displayed indicating that
thereis afaulty operator at the keyboard, who should please try again.

THE CASE CONSTRUCT VS. IF-THEN

Y ou may be wondering when to use a series of CA SE statements rather than a series of IF-THEN
statements. Good question. Some people feel that the CASE construct is more visually appealing than the
IF-THEN construct-- but then, some people like Hawaiian music in elevators and some don't. Generally,
CASE statements are used for "n-way" branches. Thereis at least one provable efficiency in the CASE
statement over the IF-THEN statement.

Consider the examples shown in Fig. 9-3. The first example (A) illustrates "fall-through" IF-THEN logic,
while the second shows the CA SE construct.

These two exampl es effectively do the same thing. They assign the variable NAME based on the single
letter entered into INITIAL. Thiskind of logic appears frequently in programs. The CASE form is much
more efficient than the IF-THEN example, because once any of the conditional expressions evaluate true,
then program execution transfers immediately to the next executable statement after the END CASE
statement. In the first example, even after any one of the conditional expressions evaluatestrue, al of the
other IF statements are still evaluated, even though they cannot possibly be true.

PRI NT "ENTER CHARACTER S | NI TI AL" : [NPUT | NI Tl AL

IF INITIAL = "F" THEN NAME = "FRED FLI NTSTONE"

IF INITTIAL = "W THEN NAME = "W LMA FLI NTSTONE"

|F INITTIAL = "P" THEN NAME = " PEBBLES FLI NTSTONE"

IF INITIAL = "D' THEN NAME = " DI NO FLI NTSTONE"

IF INITIAL # "F" AND INITIAL # "W AND INITIAL # "P* AND INITIAL # "D"
THEN NAME = " UNKNOMWN'

PRI NT NAME

PRI NT "ENTER CHARACTER S | NI TI AL"
| NPUT | NI Tl AL

BEG N CASE

CASE INITIAL = "F"

NAME = "FRED FLI NTSTONE"

CASE INNTIAL = "W

NAME = "W LMA FLI NTSTONE"

CASE INITIAL = "P"

NAME = " PEBBLES FLI NTSTONE"

CASE INNTIAL = "D

NAME = " DI NO FLI NTSTONE"

CASE 1
NAME = " UNKNOWN"
END CASE

http://www.jes.com/pb/pb_wp9.html (9 of 10) [8/21/2000 10:49:45 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 9

PRI NT NAME
Fig. 9-3. "Fall-through" IF-THEN logic vs. the CASE statement.

Additionally, the catch-all logic on line 7 of the first example is clumsy, where the CASE 1 portion of the
second example is a much more elegant way of handling the "otherwise" situation.

REVIEW QUIZ 7

1) What isthe significance of the"[" and "]" characters? Give an example of how they are used:

2) What does the BEGIN CASE statement do?

3) What is the general form of the CASE statement?

4) What do BREAK OFF and BREAK ON do?

5) What does PRINTER OFF do?

6) What impact does the PRINTER ON statement have on PRINT statements? On CRT statements?
7) What other method, besides PRINTER ON, is available for activating printer output?

8) What does PRINTER CLOSE do? When is it used?

9) What do ECHO OFF and ECHO ON do?

#previous chapter M Next chapter & Top

Copyright © 1985-2000 Jonathan E. Sisk. It is against the law to reproduce or distribute thiswork in any
manner or medium without written permission of the author, c/o JES, Inc., P.O. Box 19274, Irvine, CA
92623, phone (949) 553-8200, fax (949) 553-9779, email: [sisk@jes.com.

http://www.jes.com/pb/pb_wp9.html (10 of 10) [8/21/2000 10:49:45 PM]

mailto:jsisk@jes.com
http://www.jes.com/
mailto:jsisk@jes.com

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 10

C Jonathan E. SIsk's
 Pick/BASIC: A Programmer's
Guide

\.* WWW Edition January, 2000

\ Chapter 10
o Looping with the FOR-NEXT
Statement

In example 8, iterative loop functions are covered, specifically, the FOR NEXT. Additionally, the
FIELD, INDEX, COL1(), AND COL2() functions are discussed.

\

L
£

Enter Program Example 8, shown in Fig. 10-1.

ABOUT THE FOR-NEXT CONSTRUCT

In previous examples, several forms of "looping” constructs have been examined. To reiterate, aloop isa
construct in which a series of instructions are repeated a certain number of times. In this example, the
FOR-NEXT statement isintroduced. This particular structure comes straight from standard Dartmouth
BASIC, but afew twists have been added.

The basic premise of a FOR-NEXT construct is that the number of iterations to perform is defined in the
FOR declaration statement, which has the general form:

FOR counter.variable = starting. expression TO endi ng. expressi on

The counter.variable is ssimply a variable which contains a numeric value. The first time that the FOR
statement is evaluated and executed, the result of the starting.expression is assigned to the
counter.variable. All of the statements up to the NEXT counter.variable statement are repeated until the
value of the counter.variable is greater than or equal to the value of the ending.expression. The
ending.expression also contains a numeric value which indicates the maximum number of times that the
loop is performed.

A (possibly apocryphal) historical note: Virtually everyone uses the variable name | asthe
counter.variable. Thisis deeply rooted in history and comes to us from the old FORTRAN1
programming days. In FORTRAN, | wasthe first of the predeclared integer variable types. Old habits die
hard. Thereis no rule that you must use "I" as your counter variable. Rather, | suggest you try to use
descriptive variable names instead.

http://www.jes.com/pb/pb_wp10.html (1 of 12) [8/21/2000 10:49:47 PM]

http://www.jes.com/gifs/adsnstuf/pb2bl.jpg

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 10

Fig. 10-4. Program Example 8

001 * EX 008

002 * LOOPI NG W TH FOR/ NEXT, THE FI ELD AND | NDEX FUNCTI ONS
003 * mmidd/yy: date last nodified

004 * JES. author's initials

005 *

006 PROWPT ":"

007 STRING = "" ; * SET WORK STRI NG TO NULL

D008 *

009 * FORMAT SCREEN

010 *

011 PRINT @-1): @20,0): "EXAMPLE 8": @58,0): TI MEDATE()
012 *

013 * GET NUVMBER OF NAMES FOR UPPER END OF FOR ... NEXT

014 *

015 LOOP

016 PRINT @3,3): "ENTER A NUVBER BETWEEN 5 AND 9": @-4):
017 | NPUT NUMBER

018 UNTIL (NUVBER >= 5 AND NUMBER <= 9) AND NUMBER # "QUI T* DO REPEAT
019 IF NUMBER = "QUI T" THEN STOP

020 *

021 FOR | = 1 TO NUMBER

022 LOOP

023 PRINT @3,3+l) : "ENTER NAME NUVBER': | "L#5":

024 | NPUT NAME

025 UNTIL NAME # "" DO REPEAT

026 | F NAME = "QUI T" THEN STOP

027 *

028 IF | # NUMBER THEN ; * | F NOT LAST TI ME THEN APPEND "*"
029 STRING = STRING : NAME : "*"

030 END ELSE ; * |F LAST TI ME JUST APPEND NANE

031 STRI NG = STRI NG NAME

032 END

033 NEXT |

034 *

035 * DI SPLAY THE STRI NG

036 *

037 PRINT @3,13) : "HERE' S WHAT THE NAME STRI NG LOCKS LIKE : "
038 PRINT @3,14): STRI NG

039 *

040 * GET THE NUVMBER OF THE NAME TO RETRI EVE

041 *

042 LOOP

043 PRINT @3,16) : "ENTER THE NUMBER OF THE NAME TO RETRI EVE"

http://www.jes.com/pb/pb_wp10.html (2 of 12) [8/21/2000 10:49:47 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 10

044 | NPUT NUVBER

045 UNTIL (NUVBER >= 1 AND NUMBER <= 9) AND NUMBER # "QUI T" DO REPEAT
046 | F NUMBER = "QUI T" THEN STOP

047 *

048 * GET NAME FROM STRI NG AND SHOW BEGH NNI NG AND ENDI NG COLUWNS
049 *

050 PRINT @3,17) :"NAME': NUMBER "IS' :FIELD(STRI NG "*", NUVBER)
051 PRINT @3,18) : "IT BEGNS IN POSI TION': COL1() + 1

052 PRINT 8(3,19): "AND ENDS IN POSI TION': COL2() - 1

053 PRINT @3,21) : "PRESS <cr> WHEN READY TO TEST | NDEX FUNCTI ON!
054 | NPUT PAUSE

055 *

056 * NOW LET' S CLEAR SCREEN FOR SECOND HALF OF PROGRAM

057 *

058 PRINT @-1):

059 PRINT @3,2) : "AGAIN, HERE |'S WHAT THE NAME STRI NG LOOKS LI KE: "
060 PRINT @3,3): STRI NG

061 *

062 * GET VOWEL

063 *

064 LOOP

065 PRINT @3,5): "I'LL NEED A VOWEL (A E 1,0 OR U ": @-4):
066 | NPUT LETTER

067 UNTIL | NDEX ("AEl OU', LETTER 1) OR LETTER = "QUI T" DO

068 PRINT @3,6) : "SORRY.": LETTER "IS NOT A VOWEL"

069 REPEAT

070 | F LETTER = "QUI T" THEN STOP

071 *

072 * COUNT THAT VOWEL AND SHOW HOW MANY WERE FOUND

073 *

074 NUMBER. VOWELS = COUNT(STRI NG LETTER)

075 PRINT @3,6) : "THERE ARE" : NUVBER VOWELS : " OCURRENCES OF"
076 PRI NT LETTER

077 *

078 * NOW SHOW EXACTLY WHERE THEY WERE FOUND

079 *

080 PRINT @3,7) : "HERE ARE THE POSI TI ONS WHERE THEY WERE FOUND'
081 FOR | = 1 TO NUVBER VOWELS

082 POSI TION = | NDEX(STRI NG, LETTER, |) ; * FIND NEXT OCCURRENCE
083 PRINT @2+POSITION,4) : "A" :* PUT ' ARROWNS UNDERNEATH
084 PRINT @3,8+): "LETTER #': |: "'IS IN POSI TION' : POSI TI ON
085 NEXT |

086 *

087 * ALL DONE

088 *

089 PRI NT

http://www.jes.com/pb/pb_wp10.html (3 of 12) [8/21/2000 10:49:47 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 10

090 END

Statements between the FOR and the NEXT counter.variable statement are executed, and when program
execution reaches the NEXT counter. variable, the counter.variable is automatically incremented by 1
(one). Program execution then transfers back to the start of the loop, where the FOR statement is found.

After going back to the start of the loop and incrementing the ending.expression, the current value of
counter.variable is checked to seeif it is greater than or equal to the value of ending.expression. If
counter.variable is greater than or equal to the ending.expression, then the loop is considered done, and
program execution transfers to the first executable statement after the NEXT counter.variable statement.
Otherwise (if they are not equal) the loop executes again and the pattern continues.

The following example illustrates how the computer could be instructed to count from 1 to 10 and print
the numbers along the way:

FORI1 =1 TO 10
PRI NT |
NEXT |

LOOPS WITHIN LOOPS

Before continuing with the explanation about the FOR-NEXT in Example 7, an important side trip needs
to be taken to introduce the concept of loops within loops. Invariably, you will discover these in your
programs and you will eventually find a need to include them yourself.

When a FOR-NEXT construct occurs within another FOR-NEXT construct, the "interior" loop acts
almost like a single statement or function, meaning, that it will perform its designated number of
iterations in each iteration of the exterior loop. For example, the following "nested" 1oop executes 100
times:

FORI1 =1 TO 10
FORJ =1 TO 10
PRI NT "1 =" I J =" J
NEXT J
NEXT |

Notice that the interior loop, which isreferred to asthe "J-loop" in this explanation, is entirely contained
within the "I-loop." When this code executes, the variable 1, initially is set to 1. Then the "J-loop" begins,
and Jis set to 1. The next line of code prints the current value of | and J, and then Jisincremented
automatically by 1. Again, the current values of | (which has not changed), and J (which isnow 2) are
printed. The J-loop continues until J reaches 10. Just as soon as J-loop terminates, the |-loop increments |
by 1, then checksto determineif | is 10. If | is 10 then both loops are done and the program continues at
the next executable statement. Otherwise, ' 'J-loop' ' happens again. And again. And again.

| suggest that you indent source programsto assist in visually identifying "levels’ of logic. The
FOR-NEXT constructs are excellent examples of why thisis so important. Without indenting the "levels*
of logic, it becomes increasingly trickier to maintain programs.

http://www.jes.com/pb/pb_wp10.html (4 of 12) [8/21/2000 10:49:47 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 10

FOR-NEXT IN CONTEXT

On line 21 of our example program (see Fig. 10-2), | is assigned the value of 1. Program execution then
picks up on line 22, where a LOOP statement is started. Line 23 positions the cursor at position 3 on line
4 (which was calculated by adding the current value of |, which isstill 1, to 3). The prompt "ENTER
NAME NUMBER" isthen followed by the current value of | (still the number 1), which is " masked"
left-justified in afield of five blanks. The cursor is then held next to this prompt and the program awaits
input on line 24. Y ou have two choices, as usual. Y ou may either enter a name for testing the example
(use the seven dwarves namesiif you can't think of any) or you may enter "QUIT," which means that you
are ready to bail out.

The purpose of the exterior loop is to build a string of names, each of which is delimited by an asterisk.
For example:

SLEEPY* DOPEY* GRUVPY* HAPPY* DOC* SNEEZY* BASHFUL

The number of names you are asked for depends upon the number you entered on line 16, when you were
asked to enter a number between 5 and 9.

Conseguently, on line 28 the program compares the current value of | to NUMBER (your number), to
determineif thisisthe last time through the loop. If it is not the last time through, then, on line 29, the
name you entered is concatenated to the end of STRING, followed by an asterisk. Otherwise, if it isthe
last time through, then on line 31 the last name you entered is concatenated to the end of STRING,
without being followed by an asterisk.

Online 33, | isincremented by 1, and the program checksto seeif | isequa to NUMBER. If they are
egual, then the program "falls out" of the loop and continues execution on line 37 (the next executable
statement). If they are not equal, then program execution transfers back to the top of the loop, in this
case, back to line 21, where the process repests.

021 FOR | =1 TO NUMBER
022 LOCP
023 PRINT @3,3+l) : "ENTER NAVE NUMBER': | "L#5":

024 | NPUT NAME

025 UNTIL NAME # "" DO REPEAT

026 I|F NAME = "QUI T" THEN STOP

025

028 I'F I # NUMBER THEN ; * | F NOT LAST TI ME THEN APPEND "*"
029 STRI NG = STRI NG NAME: "*"

030 END ELSE ; * I'F LAST TI ME JUST Applied NAMVE
031 STRI NG = STRI NG NAME

032 END

033 NEXT |

Fig. 10-2. Main input loop of Program Example 8.

http://www.jes.com/pb/pb_wp10.html (5 of 12) [8/21/2000 10:49:47 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 10

THE FIELD FUNCTION

There are many occasions (in programs) where you need to manipulate strings of characters that are
delimited by known, yet unreserved (the reserved delimiters could actually be used in this function, but
thisrarely occurs. A special set of intrinsic functions are provided for dealing with the reserved
delimiters, These are: INSERT, REPLACE, DELETE, EXTRACT, LOCATE, and the specia "dynamic
array" functions which use the < and > characters delimiters). Our example program demonstrates one
such occasion:

050 PRINT @3, 17) :"NAME" :NUMBER :" IS " :FIELD(STRI NG "*", NUMBER)

The reserved delimiters are the attribute mark, value mark, and subvalue mark . They are the special
characters used to accommodate the Pick item structure. There are a handful of intrinsic functions used
exclusively for dealing with attributes, values, and subvalues, which are discussed in Example 11.

Thefirst portion of this program constructs a string of names, each of which is separated from the others
by an asterisk. This string is stored in the variable STRING. The example provided was:

SLEEPY* DOPEY* GRUMPY* HAPPY* DOC* SNEEZY* BASHFUL

The string may now be manipulated with a special intrinsic function called FIELD. The FIELD function
Is used to locate and extract a string of characters from within another string of characters. Before the
string may be extracted, however, two things must be known: the character that is being used as the
“field" (or group) delimiter, and the relative number of the field to retrieve. The term "group” isused asa
reference to the individual strings of characters, which happen to be names in this example. Note that the
group, or field, delimiter may not be one of the reserved delimiters (attribute, value, or subvalue mark).

This example has seven groups, or "fields," each of which is separated from the others by an asterisk:

STRI NG
G oup nunber

SLEEPY* DOPEY* GRUMPY* HAPPY* DOC* SNEEZY* BASHFUL
1 2 3 4 5 6 7

Given that these two pieces of information are known, any individual group may now be retrieved with
the FIELD function which has the general form:

FI ELD(stri ng. vari abl e, group. delim ter, occurrence)

The string.variable is the variable which contains the groups, or fields, of strings to search through. The
group.delimiter is the character (sometimes characters) that constitutes a group delimiter. The occurrence
Is a variable which evaluates to a number to indicate the number of the group to retrieve. As with most
intrinsic functions, the FIELD statement, always appears in either an assignment statement (on the right
side of an equals sign), or may be immediately printed or displayed with aPRINT or CRT statement.

Line 50 positions the cursor to position 3 on line 17, where it then displays the word NAME, followed by
a space, followed by the number that you entered into the variable NUMBER on line 44. After another
space, the word "1S" is displayed, followed by yet another forced space. Finally, the last thing done on
line 50 is the FIELD function, which takes your number and searches through STRING until it finds that
particular group. The name that corresponds with the group number you requested then displays on the
screen.

http://www.jes.com/pb/pb_wp10.html (6 of 12) [8/21/2000 10:49:47 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 10

This program required you to enter five to nine groups, and then required you to pick a number between
5 and 9 to extract that particular group. Things are not always this cut and dried. To further expand on
this, suppose there were avariable called NAME that contained the value:

NAME = " LI NCOLN, ABRAHAM'

To extract the last name seems pretty elementary. This could be done with the statement:
LAST. NAME = FI ELD(NAME, ", ", 1)

Executing this statement results in the string LINCOLN being assigned to the variable LAST.NAME.
This statement literally reads. Search through the variable called NAME until you find the first delimiter
(acomma) and extract all the characters up to that point in the string, not including the delimiter itself.
The FIELD function never retrieves the group delimiter.

Getting the first name out of the string is alittle trickier. Certainly, it requires using the FIELD function,
but there will still be a"problem™ remaining, i.e., how to get rid of the space before the first name.
Consider the following statement:

FI RST. NAME = FI ELD(NAME, ", ", 2)

This statement literally reads: Search through the variable called NAME until you find the second
comma delimiter, and extract all the characters from the first commato the second. Executing this
statement results in the string” ABRAHAM" (note the space) being assigned to the variable called
FIRST.NAME. Since there is no second delimiter in the string, the FIELD function extracted al the
remaining characters after the first comma, and placed the extracted string into FIRST.NAME.

Now, how might the extra space be removed? The answer is. Lots of ways. Remember the TRIM
function? It isused to "trim" off extraleading and/or trailing spaces (as well as two or more embedded
spaces). It could easily be used here, as in the following example:

FI RST. NAME
FI RST. NAME

FI ELD(NAME, ", ", 2)
TRI M FI RST. NAVE)

That's one way. These two functions actually could have been combined into one more powerful, if a
little more obscure, statement:

FI RST. NAME = TRI M FI ELD(NAME, ", ", 2))

Aswe learned earlier, when introducing the concept of functions and expressions, functions may be
nested within other functions. When this combination format is used, the program works outward from
the innermost set of parentheses. As each successive function completes, the results that it producesis
passed along to the next successive function.

Another method for extracting the first name requires the use of multiple FIELD functions, asin the
following examples:

FI RST. NAME
FI RST. NAME

FI ELD(NAME, ", ", 2)
FI ELD(FI RST. NAME, " ", 2)

Again, these two functions could be combined into one statement:

http://www.jes.com/pb/pb_wp10.html (7 of 12) [8/21/2000 10:49:47 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 10

FI RST. NAVE = FI ELD(Fl ELD(NAME, ", ",2)," ", 2)

Fortunately, good sense steps in every once in awhile and shouts in your ear, "Hey! Do you really want
to have to support this later? So what if you trim 3 milliseconds off the processing time if it takes you 15
minutes to figure it out next year when you wander back through this code?*

There are at least two additional ways that the first name could have been extracted, but these previous
methods are probably the most effective and efficient. One of the two additional ways available is to not
store the space, which removes the extra processing time to remove it. Finally, the ACCESS"MCA"
conversion could have been used in the form:

FI RST. NAME = FI ELD(NAMVE, ", ", 2)
FI RST. NAME = OCONV(FI RST. NAME, " MCA")

Or they could have been combined into one statement:
FI RST. NAME = OCONV(FI ELD(NAMVE, ", ", 2), " MCA")

The MCA conversion code retrieves al of the alphabetic characters from a string. This means just the
letters A-Z, in either the upper or lower cases.

THE COL1 AND COL2 FUNCTIONS

Each time a FIELD statement is executed, two special system functions, called COLI () and COL2(), are
updated. These functions retrieve the current values of special system variables.

051 PRINT @3,18) :"IT BEGANS IN PCSI TION " :COL1()+1

COL1()) contains the character position at which the beginning group delimiter was found in the last
FIELD statement; COL2() contains the ending position where the group delimiter was found.

Observe the example string again, along with the columnar display of the character positions:

Char act er 1 2 3 4
Posi ti on 12345678901234567890123456789012345678901234
STRI NG SLEEPY* DOPEY* GRUMPY* HAPPY* DOC* SNEEZY* BASHFUL

Suppose that you had requested the third group from this string in the FIELD function. Afterward,
COL1() contains 13, because the asterisk that precedes the "third" group was found in the 13th character
position of the string. COL2() contains 20, since that is the position in which the terminating group
delimiter was found.

Both the COL1() and COL2() may be used in calculations or may be assigned to another variable. An
important note: Each time the FIELD function is executed, the valuesin COL1() and COL2() change.

For instance if you wanted to remove the third group, and its delimiter, the following statement could be
used:

STRING = STRING 1, COL1()]: STRI NG COL2() +l, LEN(STRI NG]

Thisreads: Extract from the first position of the string all of the characters up to the current value of

http://www.jes.com/pb/pb_wp10.html (8 of 12) [8/21/2000 10:49:47 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 10

COL1(), which is 13 in the example. Consequently, this takes the string "SLEEPY*DOPEY *" and holds
it in atemporary work area. The second portion of the statement tells the program to extract al of the
characters after COL2(), using the LEN function, which determines how many characterstherearein a
string. This effectively extracts the string:

HAPPY* DOC* SNEEZY* BASHFUL

and joinsit to the end of the former string in the temporary work area so that the string ends up as:
SLEEPY* DOPEY* GRUMPY* HAPPY* DOC* SNEEZY* BASHFUL

It might seem like alot of work, but thisis the way to manipulate strings of characters that are delimited
by non-reserved delimiters. (Note that in most implementations of Pick, the"[" and "]" text extraction
characters must be on the right side of an - symbol or in a PRINT statement.)

On line 51 of Example 8, the program moves the cursor to position 3 on line 18 of the screen and outputs
the message, "IT BEGINS IN POSITION". The program then calcul ates the actual starting columnar
position at which the string was found by taking the current value of COL1() and adding 1 to it.
Remember that the COL 1() function returns the position where the delimiter was found, not the position
where the string began. Similarly, On line 52 the ending position of the string is calculated by taking the
current value of COL2() and subtracting 1 from it.

ABOUT THE INDEX FUNCTION

The INDEX function is closely related to the FIEL D function. It, too, is used to locate a string of
characters within another string of characters, when the string being searched through is not delimited by
reserved system delimiters.3 The main difference between the FIELD and the INDEX function, however,
isthat the FIEL D function relies upon knowing the character that is being used as the delimiter and the
"group” number to retrieve. Conversely, the INDEX function does not need to know which character is
being used as the string delimiter. That's because the INDEX function is used to find a string of
characters within another string of characters and to report the actual starting position of the desired
string.

The INDEX function has the following general form:
| NDEX(string. variabl e, search. string, occurrence)

The string.variable is the variable which contains a string of characters to search through. The search.
string is the character (or characters) to be located within the string. variable. The occurrenceisa
variable that evaluates to a number to indicate which occurrence of the search.string of the group to
retrieve. As with most intrinsic functions, the INDEX statement always appears in either an assignment
statement (on the right side of an equals sign), or may be immediately printed or displayed with a PRINT
or CRT statement. The INDEX function may also appear in a conditional expression (IF, CASE, LOOP).
It is aso capable of being used in calculated GOTO and GOSUB statements, referred to as ON-GOTO
and ON-GOSUB.

Before explaining the mechanics of the INDEX functions provided in Example 8, study the following
example which illustrates the general use of the function by finding DOPEY in the Seven Dwarves
string:

http://www.jes.com/pb/pb_wp10.html (9 of 12) [8/21/2000 10:49:47 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 10

001 STRI NG = " SLEEPY* DOPEY* GRUMPY* HAPPY* DOC* SNEEZY* BASHFUL"
002 SEARCH. STRI NG = " DOPEY"
003 POSI TI ON. FOUND = | NDEX(STRI NG, SEARCH. STRI NG, 1)

In line 1 of thisexample, astring of charactersis assigned to the variable, STRING. Line 2 assigns a
variable called SEARCH.STRING, which isthe string of charactersto find within STRING. Line 3is
where the variable, POS TION.FOUND is assigned by using the INDEX function to find the first
occurrence of DOPEY in the variable, STRING.

The effect of line 3 isthat the value 8 is stored in the variable POS TION.FOUND, since the string
DOPEY isfound beginning in the eighth character position of the string.

INDEX in Program Example 8

Remember that conditional expressions return a value that represents either atrue or false answer.
"False" isaways 0 (zero) or null. "True," however, may be any numeric non-zero. This example
demonstrates the use of the INDEX function as a conditional expressionin line 67:

067 UNTIL | NDEX("AEIQU', LETTER, 1) OR LETTER = "QUI T" DO

To illustrate this principle as a self-standing example, observe the following:

001 ALPHABET. STRI NG = " ABCDEFGHI JKLMNOPQRSTUVWKYZ"
002 CHARACTER = "M
003 PCSI TI ON. FOUND = | NDEX(ALPHABET. STRI NG, CHARACTER, 1)

In this example, after execution of line 3, the variable called POS TION. FOUND contains the value 13,
since the letter M isfound in the 13th character position of ALPHABET.STRING.

Suppose, however, that the object of the search is not located within the string, asin the following
example where the INDEX function fails:

001 ALPHABET. STRI NG = " ABCDEFGHI JKLMNOPQRSTJVWKYZ"
002 CHARACTER = "@
003 POSI TI ON. FOUND = | NDEX(ALPHABET. STRI NG, CHARACTER, 1)

In this example, after execution of line 3, the variable called POS TION.FOUND contains the value 0
(zero), since the @ character is not found in any position of ALPHABET.STRING.

On line 66 of Example 8, you are asked to enter avowel. The character (or characters) that you enter is
stored in the variable called LETTER. Line 67 lists two conditional expressions, connected with an OR,
which means either conditional expression may evaluate true to satisfy the UNTIL portion of the loop.
There are, however, six possible responses that qualify as "true." As aways, the "QUIT" bail-out
mechanism is provided. The other five possible true responses are determined by the following INDEX
function:

| NDEX (" AElI QU' |, LETTER, 1)

3. Again, the reserved system delimiters could be used in the INDEX function, but additional intrinsic
functions have been added specifically to deal with the system delimiters.

http://www.jes.com/pb/pb_wp10.html (10 of 12) [8/21/2000 10:49:47 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 10

Thisreads:. If the variable called LETTER contains aletter that is found in the string "AEIOU," then the
program returns the position number at which it is found. The resulting value is a numeric non-zero, or
“true." If the letter is not found, the program returns a 0 (zero), or false, value. Regardless of the
outcome, the result is returned to the UNTIL clause as the result of a conditional expression.

Note that the null string is always considered present in astring. Thisisillustrated in the following
statements:

| NDEX ("AEIQU', "" ,1)

This function retrieves the value 1, since the null is "found" at the beginning of the string.

Using Multiple INDEX Functions

The loop of statements between lines 64 and 69 effectively forced you to enter avowel or to bail out.
Line 74 takes the vowel you just entered into LETTER and counts the number of occurrences of that
particular vowel within the string of hames that you entered earlier into STRING.

Suppose, for example, that STRING contained the names:
STRI NG = " SLEEPY* DOPEY* GRUVPY* HAPPY* DOC* SNEEZY* BASHFUL"

Suppose further that you wanted to know how many occurrences of the letter E there were. This could be
done with the statement:

NUMBER. VONELS = COUNT (STRING "E")

After execution, NUMBERVOWELS contains the value 5, since there are five occurrences of the letter E
in the string. Line 75 reports the number of occurrences of the specified vowel in your string.

On line 81, a FOR-NEXT construct isinitiated, and the NUMBER.VOWEL S variable is"set" asthe
upper boundary of the loop with the number calculated on line 74. This determines how many times the
FOR- NEXT construct isto be executed. The loop counter variable, |, isassigned the initial value of 1.

On line 82, the INDEX function is called upon to determine the character position of the vowel, based
upon the occurrence number determined by the current value of |. The first time through the loop, | is 1.
The second time through, | is 2, and so on. If the vowel isfound, then its corresponding character
position is assigned to the variable called POS TION.

Line 83 calculates where the cursor is to be placed on the screen by adding the value of POSTION to the
constant 2 (remember that the string display began in position 3), and then adding the value of
POSITION. When the cursor position is calculated, an up-arrow (*) is placed at that spot on the screen.

Line 84 does more or less the same thing, but cal culates the screen line number rather than the position
number. Additionaly, it prints the number of each occurrence of the vowel, along with the corresponding
character positions.

Line 85 causes | to be incremented by 1 and then checksto seeif | has become greater than or equal to
NUMBER.VOWELS . If they are equal, then execution continues on line 89, where a PRINT statement
issues a blank line on the screen and the program stops. If they are not equal, then program execution
transfers back to the top of the loop, on line 81.

http://www.jes.com/pb/pb_wp10.html (11 of 12) [8/21/2000 10:49:47 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 10

REVIEW QUIZ

1) What does the FIELD function do?

2) Study the following assignment statement:
DESTI NATI ONS = " NEW YORK, ZURI CH, PARI S, SI NGAPCRE, SYDNEY"

What statement determines how many destinations there are, and assigns the result to a variable called
NUMBERDESTINATIONS? What statement, or statements, would extract the fifth destination and
assign it to avariable called LAST.STOP?

3) What isthe INDEX function used for?

4) Study the following statement:
ALPHABET = " ABCDEFGHI JKLMNOPQRSTUVWKYZ"

What statement determines the character position of the letter Sin the variable called ALPHABET?

#previous chapter M Next chapter & Top

Copyright © 1985-2000 Jonathan E. Sisk. It isagainst the law to reproduce or distribute this work in any
manner or medium without written permission of the author, c/o JES, Inc., P.O. Box 19274, Irvine, CA
92623, phone (949) 553-8200, fax (949) 553-9779, email: [sisk@jes.com.

http://www.jes.com/pb/pb_wp10.html (12 of 12) [8/21/2000 10:49:47 PM]

mailto:jsisk@jes.com
http://www.jes.com/
mailto:jsisk@jes.com

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 11

=G Jonathan E. Sisk's
28 Pick/BASIC: A Programmer's
Guide

2 WWW Edition January, 2000

Chapter 11
Extending the FOR-NEXT
Construct

Program example 8 in the last chapter introduced the FOR-NEXT construct. This chapter's example
illustrates the various extentions that are available to this loop construct. The principal statement covered
isFOR- NEXT-STEP

Enter Program Example 9, shown in Fig. 11-1.

THE STEP FUNCTION IN FOR-NEXT

The FOR-NEXT construct, in its simplest form, has the general format:
FOR counter.variable = starting. expression TO endi ng. expressi on

For example:
FORI =1 TO 10

Several additional features may be included in the FOR-NEXT construct. These features are the STEP
function, and WHILE or UNTIL conditional expressions.

Fig. 11-1. Program Example 9.

001 * EX 009
002 * USING "STEP" IN THE FOR ... NEXT FUNCTI ON

003 * mmidd/yy: date last nodified
004 * JES. author's initials

005 *

006 PROWPT "-"

007 *

008 * GET BEG NNI NG RANGE NUMBER
009 *

http://www.jes.com/pb/pb_wpl11.html (1 of 4) [8/21/2000 10:49:49 PM]

http://www.jes.com/gifs/adsnstuf/pb2bl.jpg

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 11

010 LOOP

011 PRI NT "ENTER A NUMBER BETWEEN 1 AND 10"

012 | NPUT START

013 UNTIL (START > 0 AND START < 11) AND START # "QUI T" DO REPEAT
014 |F START = "QUI T" THEN STOP

015 *

016 * GET ENDI NG RANGE NUVBER

017 *

018 LOOP

019 PRI NT "ENTER A NUMBER BETWEEN 100 AND 200"

020 I NPUT FI NI SH

021 UNTIL (FINISH > 99 AND FI NI SH < 201) DO REPEAT
022 IF FINISH = "QU T" THEN STOP

023 *

024 * GET STEP FACTOR

025 *

026 LOOP

027 PRI NT "ENTER A NUVBER BETWEEN 1 AND 5"

028 | NPUT FACTOR

029 UNTIL (FACTOR > 0 AND FACTOR < 6) DO REPEAT

030 *

031 * HAVE ALL DATA. SHOW | NSTRUCTI ON TO BE EXECUTED.
032 *

033 PRI NT

034 PRI NT "HERE' S WHAT HAPPENS WHEN WE | SSUE THE | NSTRUCTI ON : "
035 PRINT "FOR| =" : START: "TO' : FINISH : "STEP" : FACTOR
036 *

037 * NOWDO I T

038 *

039 FOR | = START TO FI NI SH STEP FACTCR

040 PRINT | "L#4"

041 NEXT |

042 PRI NT

043 PRI NT

044 *

045 * NOW DO | T BACKWARDS.

046 *

047 PRI NT

048 PRI NT "HERE' S WHAT HAPPENS WHEN WE | SSUE THE | NSTRUCTI ON!
049 PRINT "FOR | =" : FINISH : "TO' : START :

050 PRINT "STEP': (FACTOR * (-1)) ; * NEGATE FACTOR
051 *

052 * READY. GO

053 *

054 FOR | = FIN SH TO START STEP - FACTOR

055 PRINT | "L#4" :

http://www.jes.com/pb/pb_wp11.html (2 of 4) [8/21/2000 10:49:49 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 11

056 NEXT |
057 *

058 * ALL DONE
059 *

060 PRI NT

061 PRI NT

062 END

Normally, when the FOR-NEXT construct reaches the bottom of the loop, where the NEXT
counter.variable statement is encountered, the counter.variable isincremented by 1 (one).

The STEP feature is used to change the value by which the counter variable is incremented. For instance,
if the following loop were executed:

FORI1 =1 TO 10 STEP 2
NEXT |

The loop would iterate five times. The first time through the loop, | is 1. When the NEXT | instruction is
executed, | isincremented by 2, so its value becomes 3. The next time, | is 5, then 7, then 9, then 11,
where the loop is terminated.

The first portion of this chapter's example program simply captures the value for three variables, START
IS the variable which serves as the starting.expression, a number between | and 9. The variable FINISH
functions as the ending.expression, which in this case is a number between 100 and 200. The FACTOR
variable is then captured, which is a number between 1 and 5.

035 PRINT "FOR | =" :START :" TO'" :FINISH :" STEP" :FACTOR

Line 35 displays the instruction to be executed on line 39. Suppose you entered 1 into START, 150 into
FINISH, and 5 into FACTOR. Line 35 then displays:

FORI1 =1 TO 150 STEP 5
Line 40 ssmply displays the current value of |, left-justified in afield of four blanks. Using the previous
variables and values, the following output appears:

1 6 g | 16 21 26 31 36 41 46 51 56
61 66 71 76 81 86 91 96 101 106 111 116
121 126 131 136 141 146

DOING BACKWARD LOOPS

There are occasions where the loop may need to be decremented. This is accomplished when the STEP
factor appears as a negative number. Line 50 displays the effect of having taken the previous STEP factor
and multiplying it by -1, which effectively negates the previous contents of FACTOR:

050 PRI NT" STEP"': (FACTOR * (-1)) ;¥ NEGATE FACTOR

Lines 54 through 56 are where the decrementing loop is performed. Again using the previous variables,

http://www.jes.com/pb/pb_wp11.html (3 of 4) [8/21/2000 10:49:49 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 11

the following values display:

150 145 140 135 130... down to 5

A note on FOR-NEXT efficiency. Each argument in this example was entered from the keyboard, so the
character is stored in its ASCII value. Under this circumstance, or when the arguments originate from a
file, abinary conversion takes place with each reference to any of the arguments. This slows down
program execution. It is actually more efficient to add zero (0) to the original ASCII value of each
argument and store it. This forces the conversion to numeric values prior to using the argumentsin the
FOR-NEXT construct.

REVIEW QUIZ 9

1) What function does the STEP factor serve in the FOR-NEXT statement?
2) Write a FOR-NEXT loop that counts from | TO 100, in increments of 2:
3) Write a FOR-NEXT loop that counts backwards from 100 to 1, in increments of 3:

#previous chapter M Next chapter & Top

Copyright © 1985-2000 Jonathan E. Sisk. It is against the law to reproduce or distribute this work in any
manner or medium without written permission of the author, c/o JES, Inc., P.O. Box 19274, Irvine, CA
92623, phone (949) 553-8200, fax (949) 553-9779, email: |sisk@jes.com.

http://www.jes.com/pb/pb_wp11.html (4 of 4) [8/21/2000 10:49:49 PM]

mailto:jsisk@jes.com
http://www.jes.com/
mailto:jsisk@jes.com

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 12

Jonathan E. SIsk's
Pick/BASIC: A Programmer's
Guide

WWW Edition January, 2000

Chapter 12
An Introduction to File 1/O

There are three main operations that programs perform: input, process, and output. Up to this point, the
examples have demonstrated various techniques for processing data and directing the output to the screen
or printer. Data may also be output to afile, or input from afile. Thisis commonly called file input and
file output--or more ssimply, "file I/Q". Data items from afile are input to a program, processed
(modified), and output to afile.

The Pick System offers several methods of processing data items within programs. Dynamic arrays are
perhaps the easiest and most straightforward approach to manipulating and storing itemsin afile.

In order to get the full benefit of this discussion, enter the example program in Fig. 12-1 before
proceeding to the explanations of the new topics covered. Before executing the program, create the
STAFF file. The dataitems from Appendix B must be present in the file.

Fig. 12-1. Program Example 10.

001 * EX. 010
002 * File Input and Dynam c Arrays

003 * mmidd/yy: date last nodified

004 * JES. author's initials

005 *

006 PROVPT ": "

007 *

008 STAFF. I TEM = "" . * INITI ALI ZE STAFF ARRAY
009 *

010 OPEN " STAFF" TO STAFF. FI LE ELSE STOP 201, " STAFF"
011 *

012 LOOP

013 PRI NT "ENTER STAFF NUMBER TO DI SPLAY OR 'QUI T' TO STOP"
014 | NPUT STAFF. | D

http://www.jes.com/pb/pb_wp12.html (1 of 14) [8/21/2000 10:49:57 PM]

http://www.jes.com/gifs/adsnstuf/pb2bl.jpg

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 12

015 UNTIL STAFF.ID = "QU T" DO
016 READ STAFF. | TEM FROM STAFF. FI LE, STAFF. | D THEN

017 PRI NT

018 PRI NT " NAIVE" "L#16" : STAFF. | TEMK1>

019 PRI NT " ADDRESS1" "L#16" : STAFF. | TEMK2, 1>

020 PRI NT " ADDRESS2" "L#16" : STAFF. | TEML2, 2>

021 PRI NT "Cl TY" "L#16" : STAFF. | TEMK3>

022 PRI NT " STATE" "L#16" : STAFF. | TEMk4>

023 PRI NT " ZI P" "L#16" : STAFF. | TEM5>

024 PRI NT " H RE DATE" "L#16" : OCONV(STAFF. | TEMK7>, "D2-")
025 PRI NT "HOURLY RATE" "L#16" : OCONV(STAFF. | TEM9>, "VR2, $")
026 PRI NT

027 END ELSE

028 PRI NT

029 PRINT "I TEM : STAFF.ID : "NOI' FOUND. "

030 END

031 REPEAT

032 *

033 END

HANDLING FILES: THE OPEN STATEMENT

Before items may be read from or written to afile, the file must be opened:
010 OPEN " STAFF" TO STAFF. FI LE ELSE STOP 201, " STAFF"

Opening the file simply means that the operating system must establish a connection to the physical
location of the file on the disk. The OPEN statement directs the system to establish this connection
automatically. Line 10 opensthefile.

The genera form of the OPEN statement is:
OPEN "filenanme" TO filevariable {THEN...} ELSE .

The filename argument typically is enclosed in quotes, in which case the filename must be spelled
exactly asit isfound in the MD of the current account. The filename aso may be contained in a variable,
with the same exact spelling restrictions. The TO filevariable specification is optional, but recommended.
Thefile variable is the name by which the file will be referred to throughout the rest of the program for
all subsequent READ and WRITE statements.

Not assigning the opened file to afile variable is called "opening the file as the default file variable.”
Using the default file variable form is a shortcut that affects subsequent READ and WRITE operations.
Normally, each READ and WRITE statement includes the file variable from which the item is to be mad
or to which the item is to be written. In the default file variable form, the file variable does not have to be
specified. This technique is acceptable when only onefileis being used.

The THEN initiator is allowed, but not required. Any statement, or statements, following the THEN

http://www.jes.com/pb/pb_wp12.html (2 of 14) [8/21/2000 10:49:57 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 12

initiator are executed when filename is found in the MD of the current account. The ELSE clauseis
required. Any statements following the EL SE clause are executed when the filename is not found in the
current MD. Usually, the code after EL SE advises the user that filename was not found and terminates
the program.

Error Message Numbers with the STOP Statement

In earlier examples of the STOP statement, it most often was used in an IF-THEN or an IF-THEN-EL SE
construct. None of these examples particularly required any subsequent explanation of the reason why
the program was stopped, since it was most likely terminated voluntarily.

In this example, however, the STOP statement is followed by the item-id "201."
010 OPEN " STAFF" TO STAFF. FI LE ELSE STOP 201, " STAFF"

This extension to the STOP statement allows any error message from the ERRM SG file to be displayed
upon execution of the STOP statement. This message happened to be error message 201, which, if
examined, appears as follows:

Fi | enane: ERRMSG
ltemid : 201
001
002 A
003 H 1S NOT A FI LE NAME

Upon activation of this error message, the literal "STAFF" isinserted ("passed' ') into the text of the
message where the letter A appears. This means that if this executes, it displays:

'STAFF' |S NOT A FI LE NAMVE

STOP vs. ABORT

The error message extension also applies to the ABORT statement. The difference between the STOP
and ABORT statements s that the STOP statement terminates a program, but if the program had been
activated from a PROC, the PROC will not be terminated.

The ABORT statement terminates the program and any PROC from which it may have been activated.

For instance, suppose this program had been activated from a PROC menu--a very common situation.
Normally the PROC menu clears the screen and offers a number of different menu options. If this
program executed the STOP statement and displayed the error message about the file not being found,
and then control returned to the menu, the message would display so quickly on the screen that it could
be noticed only by graduates of speed- reading classes.

On the other hand, if the STOP statement had been replaced with the ABORT statement, the message
would display on the screen and the program and menu would be terminated. The disadvantage of the
ABORT statement is that the bewildered operator is left at the TCL prompt. That's when the programmer
gets the phone call announcing that something is wrong with the program. One frequent cause of this

http://www.jes.com/pb/pb_wp12.html (3 of 14) [8/21/2000 10:49:57 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 12

problem is that the program is being run from the wrong account.

One popular method of tackling this problem is by adding afew lines of code to the EL SE clause that
Issues the STOP statement. For example:

OPEN " STAFF" TO STAFF. FI LE ELSE
PRI NT "STAFF | S NOT A FI LENAME! "
| NPUT RESPONSE
STOP

END

Thistechniqueis not quite as slick as using the error message extension illustrated in Example 10, but it
has the added advantage of pausing the program long enough to advise the operator about the error
condition and awaiting their response.

Some programmers prefer to keep the operators on their toes by putting the message up on the screen for
acertain amount of time. Thisinvolves the use of the SLEEP statement, asillustrated in the following
example:

OPEN " STAFF" TO STAFF. FI LE ELSE
PRI NT "STAFF | S NOT A FI LENAME! "
SLEEP 5
STOP

END

When this code is executed, and the EL SE clause is executed, the message appears on the screen for 5
seconds before resuming the menu. For added fun, the number of seconds may be randomized, so that the
program's naptime varies each time it is executed. (Operators tend to not find this technigue amusing.)

OBTAINING THE ITEM-ID

Before reading an item from afile, the item-id must be obtained. There are a number of methods of
obtaining the item-id. This particular method prompts the operator to enter it:

013 PRI NT "ENTER STAFF NUMBER TO DI SPLAY OR 'QUJ T° TO STOP"
014 | NPUT STAFF.ID

Use one of the data items from the STAFF file for this example. This program stores the item-id in the
variable STAFF.ID.

READING DYNAMIC ARRAYS FROM FILES

An array is adata structure which contains multiple data elements. Each element may be referenced by a
numeric subscript, which indicates its position in the array. A dynamic array is generally used to hold an
item (record) whileit is being processed in a PICK/BASIC program.

http://www.jes.com/pb/pb_wp12.html (4 of 14) [8/21/2000 10:49:58 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 12

Oncetheitem-id is entered, and after checking the response to see if the operator wants to quit, the item
may be read from the file and placed into the dynamic array.

The READ statement is used to retrieve an item from afile. It has the following general format:

READ array.variable FROMfil e.vari abl e, i d. expression .
{THEN statenent(s)} ELSE statenent(s)

Like the OPEN statement, the THEN clause is optional in a READ statement, and the EL SE clause is
required. The statement, or statements, following the EL SE clause instruct the program how to behave if
the requested item-id is not found.

In Example 10, both the THEN and the EL SE initiators were used (Fig. 12-2). Line 16 performs the
READ statement. If the item-id is found, the statements from lines 17 through 26 are executed. These
statements display some of the attributes from the item. After line 26 is executed, control returnsto the
top of the loop, where the operator is again prompted to enter an item-id.

016 READ STAFF. | TEM FROM STAFF. FI LE, STAFF. | D THEN

017 PRI NT

018 PRI NT " NAIVE" "L#16" : STAFF. | TEMK1>

019 PRI NT " ADDRESS1" "L#16": STAFF. | TEM2, 1>

020 PRI NT " ADDRESS2" "L#16" : STAFF. | TEML2, 2>

021 PRI NT "ClI TY" "L#16": STAFF. | TEMK3>

022 PRI NT " STATE" "L#16" : STAFF. | TEMk4>

023 PRI NT " ZI P" "L#16" : STAFF. | TEMK5>

024 PRI NT " H RE DATE" "L#16" : OCONV(STAFF. | TEMK7>, "D2-")
025 PRI NT "HOURLY RATE" "L#16" : OCONV(STAFF. | TEMK9>, "VR2, $")
026 PRI NT

027 END ELSE

028 PRI NT

029 PRINT "I TEM : STAFF.ID : "NOI' FOUND. "

030 END

Fig. 12-2. The THEN and EL SE clauses in the READ statement.

ENTER STAFF NUMBER TO DI SPLAY OR 'QUI T" TO STOP :100<cr >

NAME THOVPSON, HUNTER
ADDRESS1 C/ O STARDUST HOTEL
ADDRESS2

caTY LAS VEGAS

STATE NV

Z1 P 77777

H RE DATE 05-01-92

HOURLY RATE $150. 00

http://www.jes.com/pb/pb_wp12.html (5 of 14) [8/21/2000 10:49:58 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 12

Fig. 12-3. Sample output from Program Example 10.

If the item-id is not found, then the statements after the EL SE clause on line 27 are executed. Line 28
issues a blank line on the screen, and line 29 advises the operator that the just-entered item-id was not
found. Execution then passes back to the top of the loop. Suppose you entered the item-id 100, and you
had entered the data from the sample datain Appendix B. The information shown in Fig. 12-3 then
displays on the screen:

REFERENCING DYNAMIC ARRAYS

In referring to any element within adynamic array, such as STAFF.ITEM in our example (Fig. 12-4), the
angle brackets < and > are used to specify subscript locations. A subscript is simply a number that
corresponds to an attribute, value, or subvalue location within an array. Dynamic arrays may be
referenced in several different ways.

Referencing Attributes with Array Reference
Symbols

The general syntax for referencing attributes with array reference symbolsis:
array.variable<amc.expression >

018 PRI NT " NAIVE" "L#16" : STAFF. | TEMK1>

019 PRI NT " ADDRESS1" "L#16": STAFF. | TEM2, 1>

020 PRI NT " ADDRESS2" "L#16" : STAFF. | TEML2, 2>

021 PRI NT "CI TY" "L#16": STAFF. | TEMK3>

022 PRI NT " STATE" "L#16" : STAFF. | TEMk4>

023 PRI NT " ZI P" "L#16" : STAFF. | TEM5>

024 PRI NT " H RE DATE" "L#16" : OCONV(STAFF. | TEMK7>, "D2-")
025 PRI NT "HOURLY RATE" "L#16" : OCONV(STAFF. | TEMK9>, "MVR2, $")

Fig. 12-4. Referencing the fields of the STAFF.ITEM dynamic array.

The amc.expression is a number which refers to the Attribute Mark Count (AMC). For example:
018 PRI NT " NAME" "L#16" . STAFF. | TEM<1>

This displaysthe literal "NAME," left-justified in afield of 16 spaces, and then outputs the entire
contents of attribute 1.

Referencing with the EXTRACT Function

Before the dynamic array reference symbols were added to the Pick/BASIC language, locations from
within adynamic array were extracted using the intrinsic function EXTRACT. This function has the

http://www.jes.com/pb/pb_wp12.html (6 of 14) [8/21/2000 10:49:58 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 12
general format:
EXTRACT(array. vari abl e, ant. expr essi on, vint. expr essi on, Ssvnt. expr essi on)

Line 18 could have been replaced with the statement:
018 PRI NT "NAME" "L#16": EXTRACT(STAFF.ITEM 1, 0O, 0)

This produces the same result as using the dynamic array reference symbols. The manner you choose to
retrieve locations from dynamic arraysis up to you. Thereis not a great deal of difference in execution
efficiency between the two methods. Additionally, both methods are fully implemented across all
implementations of Pick, so compatibility is not an issue.

One consideration of the dynamic array reference symbols versus the EXTRACT function is that the
EXTRACT function needs a little more code, due to syntax requirements. The general format of the
EXTRACT function requires all four of the arguments within the parentheses. Thisis how the function
was originally designed to be used. Asyou recall, in the previous illustration the code read:

EXTRACT(STAFF. | TEM 1, O, 0)

Zero (0) was substituted for the vmc.expression and svmc.expression, since they are required by the
syntax of the EXTRACT function.

Referencing Values

The general syntax for referencing valuesis: array.variable < amc.expression, vmc.expression >

The vmc.expression derives a number which refers to the Value Mark Count (VMC) within an attribute.
For example:

019 PRI NT " ADDRESS1" "L#16" : STAFF. | TEM<2, 1>

Thisdisplaysthe literal "ADDRESSL," |eft-justified in afield of 16 spaces, and then outputs the contents
of thefirst value in the second attribute.

The dynamic array reference symbol form of thisinstruction has an aternative in the EXTRACT
function. Line 19 also could have been replaced with the statement:

019 PRI NT " ADDRESS1" "L#16": EXTRACT(STAFF. | TEM 2, 1, 0)

Referencing Subvalues

Expressions referencing subvalues have the following general form:

array. vari abl e<ant. expressi on, viit. expr essi on, svnt. expr essi on>

The svmc.expression derives a number which refers to the Subvalue Mark Count (SVMC) within a
value.

A subvalue also may be retrieved with the EXTRACT function using the same general format as

http://www.jes.com/pb/pb_wp12.html (7 of 14) [8/21/2000 10:49:58 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 12

Illustrated before:
EXTRACT(array. vari abl e, ant. expr essi on, vit. expr essi on, Svnt. expr essi on)

THE "LOGICAL"™ AND "PHYSICAL" VIEWS OF
DATA

The way you see data within a process such as the Editor is not at all the way the operating system sees
it. For the most part, thisis not particularly important and will remain transparent to the majority of the
people who actually use the system. For you, as the programmer, it isimportant to know how the system
deals with data.

For example, take an array called CUSTOMER.ITEM, which, inits"logica" view, lookslike this:

| TEMID:. 100

Attri bute Content
001 YUPPI E HAVEN RESORT
002 PO BOX 7] ROUTE 17
003 BEDFORD
004 VA
005 24505

Thisisits"logical" form, because thisis how it istypically displayed by the Editor, with the line
numbers on the left corresponding to attribute mark numbers.

The"physical" form, on the other hand is the way the item is actually handled and stored by the
operating system:
1002 YUPPI E HAVEN RESORTMRD BOX 7] ROUTE 17”BEDFORDMVA"24505%

To the program, a dynamic array simply appears as one long string of characters, delimited by attribute
marks (), value marks (]), and occasionally, subvalue marks (\), which are not shown in this example.

Since the system treats dynamic arrays as string variables, if the statement:
PRI NT CUSTOVER. | TEM

were issued, the entire item displays, along with all of its embedded delimiters-the attribute, value, and
subvalue marks.

Important note: Any time that any of the reserved delimiters are displayed by a PICK/BASIC program, a
metamorphosis occurs. Thisis due to the fact the PICK/BASIC strips the high-order bit on characters
above decimal 128. The program thus subtracts 128 from the actual decimal value of the delimiter and
prints the corresponding character. This means that the attribute mark, which normally displays asa
caret(), appears when printed by a PICK/basic program as a"tilde" (~). Vaue marks, which normally
appear as a bracket (]) appear asabrace (}). And finaly, subvalue marks which normally appear as a
(\), appear asavertical bar (|).

Normally, the entireitem is not printed in one PRINT statement, since the display of the extra characters

http://www.jes.com/pb/pb_wp12.html (8 of 14) [8/21/2000 10:49:58 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 12

which serve as delimiters might be confusing. Rather, specific locations, such as an attribute or value
locations, are requested, asin either of the following statements:

PRI NT CUSTOMER. | TEMK1>

or
PRI NT EXTRACT (CUSTOMER. | TEM 1, 0, 0)

This prints the contents of the first attribute. Using the physical view of our item, the following displays
on the screen:

YUPPI E HAVEN RESORT

If an attribute or value contains multiple values or subvales, then additional specifications are added to
the syntax, asin the follwing examples:

PRI NT CUSTOMER. | TEMK2, 1>

or
PRI NT EXTRACT (CUSTOMER. | TEM 2, 1, 0)

Again, using the same item, this displays
P.O BOX 7

These statements both instructed the program to print the first value from attribute two.

To retrieve the second attribute, either of the following two statements may be issued:
PRI NT CUSTOVER. | TEM <2, 2. >

or
PRI NT EXTRACT(CUSTOMVER. | TEM 2, 2, 0)

Finally, a specification to reference subvaluews may be added. Using the sample data and instruction
shown in FIG. 12-5, we can print the third subvalue from the second value of the first attribute. From this
example, the display is"789."

The alternate instruction that could have been used in Fig. 12-5is:
PRI NT EXTRACT (I NVO CE. | TEM 1, 2, 3)

WHY DYNAMIC ARRAYS NEED TO BE
REFERENCED

Now that you have seen how to reference alocation, you now need to know why you want to. Dynamic
array references are used in two ways. First, asin Example 10,

Array name : |NVO CE. | TEM
ltemid : S1000
001 X456] 123\ 456\ 789

http://www.jes.com/pb/pb_wp12.html (9 of 14) [8/21/2000 10:49:58 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 12

Physical view:
S10007X456] 123\ 456\ 789" _

instruction:
PRI NT | NvO CE. | TEMK1], 2, 3>

FIG 12-5. A LOGICAL DATA VIEW WITH VALUES AND SUBVALUES

they were used to output values to the screen or printer. Second, in some cases they may be used in an
assignment statement. This means that they appear on the left side of a"=" symboal, like in the following
example:

001 PRI NT "ENTER NAME"

002 | NPUT NAME

003 IF NAME = "QUI T" THEN STOP
004 CUSTOMER. | TEMKI > = NAME

Line 1 prompts the operator to enter a name, which is assigned to the variable NAME on line 2. Line 3
checksto see if the operator wanted to quit, in which case the STOP statement is issued. If not quitting is
chosen, then line 4 assigns the response to attribute "one" of the array CUSTOMER.ITEM.

While this appears to be arather simple means of dealing with a dynamic array, there are some sneaky
side effects and further implications to be discussed.

SNEAKY SIDE EFFECTS OF DYNAMIC ARRAYS

In the next example, four special intrinsic functions are discussed. These are INSERT, REPLACE,
DELETE, and LOCATE. They are used to manipulate dynamic arrays and were the first methods
available for this purpose. The aternate array reference symbols < and > came later to the language.

The INSERT statement is used to add a new value at a specified subscript location in an array. It does
exactly what it istold to do. This meansthat if you INSERT astring into attribute one, then it "pushes"
down any existing attributes by one attribute.

The REPLACE statement, on the other hand, replaces the contents of any subscript location. If thereis
no value in the specified subscript location, the REPLACE statement adds all of the necessary delimiters
to accommodate the request; in this case, it acts like the INSERT function.

The dynamic array references in an assignment statement are nearly as ambiguous. Confused? Relax. So
was | at first. If you follow some simple guidelines, this gets to be quite easy.

When adynamic array reference appears on the left side of an equal symbol, it may be interpreted as
either an INSERT or a REPL ACE function, depending on the existing contents of the array. For instance,
suppose an array variable called VENDORL.ITEM, is currently empty, asin this example:

001 VENDOR. | TEM = "*

http://www.jes.com/pb/pb_wp12.html (10 of 14) [8/21/2000 10:49:58 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 12

002 PRI NT "ENTER VENDOR CI TY"
003 INPUT CTY

004 IF ATY = "QUT" THEN STOP
005 VENDOR. | TEMK3> = CITY

Further suppose that you enter "BATON ROUGE" as the response and the array is displayed with the
Sstatement:

006 PRI NT VENDOR. | TEM

The following appears on the screen:
~~BATON ROUGE

(Remember the "metamorphosis’ note pertaining to the conversion of the delimiters when printed by a
program.)

In this case, the dynamic array reference on line 5 istreated as an INSERT function. Since none of the
attribute marks are already in place, the program inserted two attribute marks before the string "BATON
ROUGE" to accommodate your request.

On the other hand, assume that an array had already been constructed, and appeared as follows (in its
logical view):

Array Nanme : VENDOR | TEM
ltemid : 1000

001 U. S. COPYRI GHT OFFI CE
002 LI BRARY OF CONGRESS
003 WASHI NGTON

004 DC

005 20001

Suppose the following code were executed:

001 PRI NT "ENTER VENDCOR CI TY"
002 INPUT CTY

003 IF ATY ="QUT" THEN STOP
004 VENDOR. | TEMK3> = CITY

and the response entered was "NEW Y ORK." Here's how the array appears after the execution of line 4:

001 U S. COPYRI GHT OFFI CE
002 LI BRARY OF CONGRESS
003 NEW YORK

004 DC

005 20001

In this case, the dynamic array reference on line 4 istreated as a REPLACE function. Since all of the
attribute marks are already in place, the program did not have to insert any attribute marks before the

http://www.jes.com/pb/pb_wp12.html (11 of 14) [8/21/2000 10:49:58 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 12

string, "NEW Y ORK," to accommodate the request.

The implication of what you have just seen isthat you basically need to know, with reasonable accuracy,
just what you want to do to an array, based on whether the structure is already in place. If the array is not
aready in place, then the INSERT or REPL ACE functions may be used to put strings into specific
locations. If the array isin place, then the REPLACE function may be used to exchange the contents of
any subscript location.

SPECIAL ARGUMENTS IN DYNAMIC ARRAY
REFERENCES

In the previous illustrations of referring to subscripts within a dynamic array, each numeric expression
within the array reference symbols < and > evaluate to positive numbers which corresponded to attribute,
value, and subvalue locations.

A "-1" argument may be used in place of any of the numeric expressions within the dynamic array
reference symbols to force the position index to the end of the appropriate array location. For instance,
suppose the following statements were executed:

001 WORK. | TEM = ""
002 WORK. | TEMk- 1>
003 WORK. | TEM- 1>
004 WORK. | TEM&- 1>
005 PRI NT WORK. | TEM

"“ATTRI BUTE ONE"
"ATTRI BUTE TWOD'
"ATTRI BUTE THREE"

Line 1 initializes the dynamic array WORK.ITEM. Line 2 inserts a new attribute at the end of the
otherwise "null" array. This effectively creates attribute one. Similarly, line 3 aso adds a new attribute to
the end of the array, which resultsin the literal "ATTRIBUTE TWO" being placed into attribute two.
Line 4 does the same thing yet again, putting the string "ATTRIBUTE THREE" into attribute three.

When line 5 is executed, the following appears:
ATTRI BUTE ONE~ATTRI BUTE TWO~-ATTRI BUTE THREE

This approach to dealing with arraysis, at best, highly unconventional. More realistically, the "- 1"
argument is used to add a new value at the end of a multivalued attribute, or to add a new subvalue to the
end of avalue which may need to contain subvalues. The examplein Fig. 12-6 illustrates this principle.

Line 1 initializesthe array CUSTOMERL.ITEM. On line 2, the operator is prompted to enter thefirst line
of the address, which is stored in the variable RESPONSE on line 3. Line 4 checksto see if he or she
wants to quit. Line 5 adds the response to the end of attribute two. As aresult, the array now has two
attributes, the second of which has one value.

Thislogic isrepeated in lines 6 through 8 and on line 9, the second line of the addressis added to the end
of attribute two. After execution of line 9, the array has two attributes, the second of which contains two
values. These two values are displayed on lines 10 and 11.

http://www.jes.com/pb/pb_wp12.html (12 of 14) [8/21/2000 10:49:58 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 12

CHOOQOSING THE ITEM-ID

Each item-id in the Pick System is hashed to determine the group in which it will reside. The process of
hashing effectively takes each character in the item-id and converts it to its decimal equivalent. The
result of each of these decimal conversions are added together to form the hash total. This hash total is
then divided by the modulo of the file, which is the number that indicates the number of groupsin afile.
The remainder of thisdivision is then added to the base fid of the file, and that effectively becomes the
group to which the item hashes.

001 CUSTOMER. I TEM = ""

002 PRI NT "ENTER ADDRESS LI NE 1"

003 | NPUT RESPONSE

004 IF RESPONSE = "QUI T" THEN STOP

005 CUSTOMER. | TEMKZ, - 1> = RESPONSE

006 PRI NT "ENTER ADDRESS LI NE 2" :

007 | NPUT RESPONSE

008 | F RESPONSE = "QUI T* THEN STOP

009 CUSTOMER. | TEMKZ, - 1> = RESPONSE

010 PRINT "ADDRESS 1 : " : CUSTOMER. | TEMK2, 1>
011 PRINT "ADDRESS 2 : " : CUSTOMER. | TEMK2, 2>

Fig. 12-6. An example of using -1 in dynamic array references.

Don't worry too much about understanding the mechanics of this process. Just remember this one simple
fact about item-ids. When item-ids are sequentially assigned numbers, all of which are the same length,
you get a nearly perfect "distribution” of itemsin afile. Item-ids that are random length, or composed of
random characters, tend to distribute unevenly in afile. This means that some groups may contain items,
while other groups remain empty. In this case, the file will never be able to be sized properly.

Discussing file sizing with a Pick technician is not unlike discussing religion with atelevision evangelist.
They tend to have very strong opinions about their respective beliefs.

Several verbs allow you to analyze the distribution of itemsin afile. They are ISTAT, which shows the
current distribution statistics, and HASH-TEST, which allows a hypothetical modulo to be tested to see
how the distribution of itemsin the file would be if the modulo were to change. But rather than devote
the next 100 pages of this book to the topic, just remember the suggestion: When you have a choice of
item-ids for afile, use sequential numbers that are all the same length. Note also that the modulo for a
file should always be a prime number (one that is divisible only by itself and one).

http://www.jes.com/pb/pb_wp12.html (13 of 14) [8/21/2000 10:49:58 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 12

REVIEW QUIZ 10

1) What purpose does the OPEN statement serve? When isit used?
2) What purpose do attribute marks, value marks, and subvalue marks serve?

3) Using the dynamic array reference symbols, fill in the program instructions which are needed to
construct an item which appears as follows:

Attribute Contents

001 BARNEY RUBBLE

002 PO BOX 77] 141 BEDROCK PLACE
003 BEDROCK

004 PA

005 19104

4) Write aroutine to print the above array out in this form:

BARNEY RUBBLE

PO BOX 77

141 BEDROCK PLACE
BEDROCK, PA 19104

5) Suppose you have an array called INVOICE.ITEM that was currently "null." How does the array
appear inits physical form after executing the following instructions?

| NVO CE. | TEMKG, - | > | CONV("03-04-93","D")

| N\VO CE. | TEM<2, 3> | CONV ("100", "MR2")

6) What statement is used to retrieve an item from afile?

7) What statement, or statements, are needed to retrieve an item called S1000 from afile called
INVOICE-FILE?

8) What purpose does the THEN clause serve in a READ statement?
9) What purpose does the EL SE clause serve in a READ statement?

#previous chapter M Next chapter & Top

Copyright © 1985-2000 Jonathan E. Sisk. It isagainst the law to reproduce or distribute this work in any
manner or medium without written permission of the author, c/o JES, Inc., P.O. Box 19274, Irvine, CA
92623, phone (949) 553-8200, fax (949) 553-9779, email: [sisk@jes.com.

http://www.jes.com/pb/pb_wp12.html (14 of 14) [8/21/2000 10:49:58 PM]

mailto:jsisk@jes.com
http://www.jes.com/
mailto:jsisk@jes.com

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 13

Jonathan E. Sisk's
Pick/BASIC: A Programmer's
Guide

WWW Edition January, 2000

Chapter 13
Manipulating Dynamic Arrays

Program example 11 illustrates more variations on handling dynamic arrays. The functions introduced in this example
include the ON-GOSUB statement the INSERT function, the REPLACE function, the DELETE function, and the

powerful LOCATE statement.

The basic premise of Example 11 isthat it permits the user to build and display a dynamic array. Thisis an example
of processing an item before writing it to afile. The main difference between this and a practical exampleisthat, in
this example, the positions in which you place data are generalized. In areal-world program, each position is
predetermined.

Enter Program 11 from the example shown in Fig. 13-1.

Fig, 13-1. Program Exanple 11.

EX. 011

001 * EX 011

002 * HANDLI NG ARRAYS AND LOCAL SUBROUTI NES

003 * mm dd/yy: date |ast nodified

004 * JES: author's initials

005 *

006 PROWPT ":*

007 *

008 EQU TRUE TO 1

009 EQU FALSE TO O

010 WORK. ARRAY = "" ; * I NI TIALI ZE ' DYNAM C ARRAY

011 *

012 10 * FORMAT SCREEN

013 *

014 LOOP

015 PRINT @-1): @20,0): "HANDLI NG ARRAYS":

016 PRINT @3,2) : "WORK ARRAY:": WORK. ARRAY:

017 PRINT @3,5) : "HERE ARE THE AVAI LABLE MENU OPTIONS : "
018 PRINT @3,7) : "I --> INSERT STRI NG | NTO ARRAY"

019 PRINT @3,8) : "R --> REPLACE STRING I N ARRAY":

020 PRINT @3,9) : "D --> DELETE STRI NG FROM ARRAY"

021 PRINT @3,10): "L --> LOCATE (ATTRI BUTE) STRI NG | N ARRAY":
022 PRINT @3,11) : "C --> CLEAR ARRAY AND START OVER' :

http://www.jes.com/pb/pb_wp13.html (1 of 19) [8/21/2000 10:50:01 PM]

http://www.jes.com/gifs/adsnstuf/pb2bl.jpg

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 13

023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073

PRINT @3,13) : "ENTER OPTION OR ' QUI T'
I NPUT OPTI ON

UNTIL OPTION # "" DO REPEAT

*

* EVALUATE RESPONSE TO OPTI ON REQUEST
*

IF OPTION = "QUI'T" THEN STOP
ON | NDEX("I RDLC", OPTI ON, 1) GOSUB 100, 200, 300, 400, 500

RETURN TO TOP OF PROGRAM

* ok X

GOT10 10

*

100 * | NSERT STRI NG
*

PRINT @ 3,16): "ENTER STRI NG TO | NSERT"

I NPUT STRI NG

I F STRING = "QUI T" THEN STOP

GOosuB 700; * GET AMC NUMBER

@&OsuB 800; * CGET VMC NUMBER

&OsuUB 900; * GET SVMC NUMBER

WORK. ARRAY = | NSERT(WORK. ARRAY, AMC, VMC, SVMC, STRI NG)
RETURN

*

200 * REPLACE STRI NG
*

PRINT @3,16): "ENTER STRI NG TO USE | N REPLACE"

I NPUT STRI NG

I F STRING = "QUI T" THEN STOCP

&OsuB 700; * GET AMC NUMBER

GOsuUB 800; * GET VMC NUMBER

@G0suB 900; * GET SVMC NUMBER

WORK. ARRAY = REPLACE(WORK. ARRAY, AMC, VMC, SVMC, STRI NG)
RETURN

*

300 * DELETE STRI NG
*

PRINT @ 3,16) : "DELETE ELEMENT FROM ARRAY..."
@&OsuB 700; * GET AMC NUMBER

@&OsuB 800; * GET VMC NUMBER

GOsUB 900; * GET SVMC NUMBER

WORK. ARRAY = DELETE(WORK. ARRAY, AMC, VMC, SVVD)
RETURN

*

400 * LOCATE STRI NG
*

LOOP

PRINT @ 3,15) : "ENTER STRI NG TO LOCATE"
I NPUT STRI NG

UNTIL STRING # "" DO REPEAT

IF STRING = "QUI T" THEN STCP

http://www.jes.com/pb/pb_wp13.html (2 of 19) [8/21/2000 10:50:01 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 13

074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
L%
118
119
120
121
122
123
124

*

LOooP

PRINT @3,16): "(A) TTRIBUTE, (V)ALUE OR (S) UB-VALUE ?":
| NPUT TYPE

UNTIL TYPE # "" DO REPEAT

I|F TYPE = "QUI T" THEN STOP

*

* NOW USE APPROPRI ATE LOCATE STATEMENT

*

BEG N CASE

CASE TYPE = "A"

LOCATE(STRI NG, WORK. ARRAY; AMC. PCSI TI ON) THEN
FOUND = TRUE

END ELSE

FOUND = FALSE

END

VMC. POSI TION = 0

SVMC. POCSI TION = 0

CASE TYPE = "V!

&OsuB 700 ; * GET AMC TO SEARCH FOR VALUE
LOCATE(STRI NG, WORK. ARRAY, AMC; VMC. PCSI TI ON) THEN
FOUND = TRUE

END ELSE

FOUND = FALSE

END

SVMC. POSITION = 0O

CASE TYPE = "S"

@GosuB 700 ; * GET AMC TO SEARCH FOR VALUE
@&0osuB 800 ; * GET VMC TO SEARCH FOR SUB- VALUE
LOCATE(STRI NG WORK. ARRAY, AMC, VMC; SVMC. PCSI TI ON) THEN
FOUND = TRUE

END ELSE

FOUND = FALSE

END

CASE 1

PRINT @3,18) : "THAT WASN T A VALI D OPTI ON'
@&OSuUB 1000 ; * WAI'T FOR RESPONSE

END CASE

*

| F FOUND THEN

PRINT @3,18) : @-3) ; * CLEAR TO END OF SCREEN
PRINT @3,18) : STRING : "WAS FOUND.

PRINT @3,19) : "ATTRIBUTE': @15,19) : AMC. POSI TI ON
PRINT @3,20): "VALUE': @15,20): VMC. POSITION
PRINT @3,21): "SUB-VALUE': @15,21): SVMC. POSI TI ON
END ELSE

PRINT @3,18) : @-3) : STRING "NOT FOUND'

END

*

@&OsuB 1000 ; * "PAUSE. . . "
RETURN

http://www.jes.com/pb/pb_wp13.html (3 of 19) [8/21/2000 10:50:01 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 13

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
=72

*

500 * CLEAR ARRAY
*

PRINT @ 3,16): "ARRAY CLEARED'
WORK. ARRAY = "*"

@G0suB 1000 ; * "PAUSE..."
RETURN

*

700 * GET AMC NUMBER
*

LOOP

PRINT @ 3,18) : "ENTER ATTRI BUTE NUMBER":

I NPUT AMC

UNTI L NUM AMC) OR AMC = "QUIT" DO REPEAT

IF AMC = "QUIT" THEN STOP

IF AMC = "" THEN AMC = 0 ; * FORCE NULL TO ZERO
RETURN

*

800 * GET VMC NUMBER
*

LOOP

PRINT @ 3,19) : "ENTER VALUE NUMBER'

I NPUT VMC

UNTIL NUMVMC) OR VMC = "QUI T" DO REPEAT

IF VMC = "QUIT" THEN STOP

IF VMC ="" THEN VMC = 0 ; * FORCE NULL TO ZERO
RETURN

*

900 * GET SVMC NUMBER
*

LOOP

PRI NT @ 3, 20): "ENTER SUB- VALUE NUMBER'

I NPUT SVMC

UNTIL NUM SVMC) OR SVMC = "QUI T" DO REPEAT

IF SVMC = "QUI T" THEN STOP

IF SYMC = "" THEN SVMC = 0 ; * FORCE NULL TO ZERO
RETURN

*

1000 * PAUSE AND AVWAI T RESPONSE
*

PRINT @ 3,22) : "PRESS <CR> TO CONTI NUE"
| NPUT RESPONSE

| F RESPONSE = "QUI T* THEN STOP

RETURN

*

* ALL DONE

*

END

http://www.jes.com/pb/pb_wp13.html (4 of 19) [8/21/2000 10:50:01 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 13

THE GOSUB STATEMENT AND LOCAL SUBROUTINES

The GOSUB statement is used in PICK/BASIC programs to transfer execution to a section of code called alocal
subroutine. Often this section of code performs a series of instructions that need to be repeated many times. Thisis
more efficient, obviously, than coding the same series of instructions over and over in a program.

030 ON I NDEX("I RDLC', OPTI ON, 1) GOSuUB 100, 200, 300, 400, 500

Thereason that it is called alocal subroutine is that the program instructions that comprise the subroutine are
physically contained in the same program, and consequently, any program variables may be shared. Subroutines
normally are gathered together near the physical end of the program. Local subroutines are the opposite of external
subroutines, in which the program instructions are physically located in a separate program (item), with its own
unique program name (item-id). In external subroutines, shared variables are specifically "passed into" the subroutine
when it is activated.

The GOSUB has the same general format as the GOTO statement discussed in Example 2. This general format is:
GOSUB st at enent . | abel

The local subroutines are often gathered together near the bottom of a program. In most versions of the Pick System,
the statement.label must be a number; some versions now also allow alphanumeric statement labels.

When the GOSUB statement is executed, execution immediately transfers to the line number that begins with the
statement label. Any number of statements may be executed in the subroutine. The subroutine must have a RETURN
statement as the last executable statement in the routine. When the RETURN statement is executed, execution returns
to the next line after the line on which the GOSUB statement was found.

Study the general example of using the GOSUB statement shown in Fig. 13-2. On line one, the program immediately
transfers execution to local subroutine 1000, which isfound on line 5 of the program. On line 7, the current system
time isdisplayed in external format. Upon executing line 8, execution returnsto line 2, the first line after the GOSUB
1000 statement.

On line 2, execution passes immediately to local subroutine 2000, which occurs on line 10 of the program. At line 12,
the current system date is displayed in external format. Line 13 returns execution back to line 3, where the program
immediately stops.

001 GOSUB 1000; * transfer control to subroutine 1000
002 @GOSUB 2000; * transfer control to subroutine 2000
003 STOP ; * term nate program execution

004 *

005 1000 * DI SPLAY THE CURRENT TI ME

006 *

007 PRINT "THE CURRENT TIME I S": OCONV(TIME(), " MITHS")
008 RETURN ;: * all done. return to next statenent

009 *

010 2000 * DI SPLAY THE CURRENT DATE

0141 %

012 PRI NT "THE CURRENT DATE | S": OCONV(DATE() ,"D2-")
013 RETURN

01472

Fig. 13-2. An exanple of the GOSUB st at enent.

http://www.jes.com/pb/pb_wp13.html (5 of 19) [8/21/2000 10:50:01 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 13

THE ON-GOSUB STATEMENT

Line 30 introduces the ON-GOSUB statement, which is a computed GOSUB statement. This means that the actual
GOSUB is selected based on the value of the INDEX expression:

030 ON I NDEX("IRDLC', OPTI ON, 1) GOSuUB 100, 200, 300, 400, 500

Suppose there were five menu choices in a program, each of which performs a separate local routine within a
program. This may be coded as shown in Fig. 13-3. In lines 3 through 7, each possible response to the question is
individually tested to determine which subroutine will be activated. Thisis exactly what Program Example 11 did.
There are five possible responses to the question.

The ON-GOSUB statement has the general format:

ON nuneri c. expressi on GOSUB st at enent . | abel , st at enent . | abel

The value of numeric. expression determines which statement.label program execution is transferred to upon
evaluation.

For example, examine the use of a calculated GOSUB statement in Fig. 13-4. If you enter the number "3," the
statement at line 8 is executed. The message "SUBROUTINE THREE" is displayed. Program execution then
immediately returns to line 4, where the program stops.

The nature of the problem here is how to turn the al phabetic menu choices into numbers. Enter the INDEX function,
stage left. The INDEX function, as discussed earlier in Example 8, is used to return the numeric position of a string
within another string. Observe line 30 one more time:

030 ON I NDEX("I RDLC", OPTI ON, 1) GOSUB 100, 200, 300, 400, 500

001 PRI NT "ENTER OPTION (A B, C,D OR E)
002 | NPUT OPTI ON

003 I'F OPTION = "A" THEN GOSUB 100
004 IF OPTION = "B" THEN GOSUB 200
005 IF OPTION = "C' THEN GOSUB 300
006 IF OPTION = "D' THEN GOSUB 400
007 IF OPTION = "E'" THEN GOSUB 500
008 STOP

009 *

010 100 * "A" ROUTI NE

011 *

013 RETURN

014 *

015 200 * "B" ROUTI NE

0le *

017 RETURN

018 =

019 300 * "C' ROUTI NE

020 *

021 RETURN

022 *

023 400 * "D' ROUJTI NE

024 *

025 RETURN

http://www.jes.com/pb/pb_wp13.html (6 of 19) [8/21/2000 10:50:01 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 13

026 *

027 500 * "E" ROUTI NE
028 *

029 RETURN

Fig. 13-3. "Fall-through" logic using GOSUB statements.

The embedded INDEX function searches for the first occurrence of the response you entered into OPTION within the
string of characters, "IRDLC." If you entered the letter "R, " for example, the INDEX function returns the number 2 to
the ON-GOSUB statement, which then transfers execution to local subroutine 200, the second statement |abel in the
list of labels.

001 PRI NT "ENTER A NUVMBER BETWEEN 1 AND 5"'
002 | NPUT RESPONSE

003 ON RESPONSE GOsuB 1000, 2000, 3000, 4000, 5000
004 STOP

005 *

006 1000 PRI NT "SUBROUTI NE ONE" ; RETURN

007 2000 PRI NT "SUBROUTI NE TWO' ; RETURN

008 3000 PRI NT "SUBROUTI NE THREE" ; RETURN
009 4000 PRI NT "SUBROQUTI NE FOUR' ; RETURN

010 5000 PRI NT "SUBRQUTI NE FI VE' ; RETURN

Fig. 13-4. Calculated GOSUB statements.

ABOUT THE INSERT FUNCTION

The INSERT function, briefly introduced in Example 10, is used to place a string at a specific location in a dynamic
array. If the necessary delimiters are not in place to accommodate your request, then the INSERT function
automatically puts them in to ensure that the string ends up in the position you requested.

The general form of the INSERT functionis:

array.variable = I NSERT(array. vari abl e, ant.expression,...
VITC. eXpr essi on, Svnt. expressi on, string.expression)

Note that the "..." ellipsisin the above general format--and throughout this text--means that the statement has been
broken up into multiple lines for explanation purposes only. The ellipsisis not part of the syntax.

Thisfunction requires al five of the arguments within the parentheses and always appears on the right side of an
eguals operator, meaning that it is always the source of an assignment.

The array.variable on the |eft side of the "=" assignment operator is the same as the array.variable on the right side
of the operator. The amc.expression is an expression which contains a number indicating the attribute position where
the string is to be placed. The vmc.expression is an expression which contains a number indicating the value position
within the specified attribute. The svmc.expression is an expression which contains a number indicating the subvalue
position within a specified value.

The string.expression is the expression which contains the string of characters to be inserted at some specific location
within the dynamic array. Any statement or function which produces output may be used here. Note that the special
argument "-1" may be used interchangeably with any of the numeric expressions within the list of argumentsto
append the string to the end of the item, the end of an attribute, or to the end of avalue, asillustrated in Example 10.

http://www.jes.com/pb/pb_wp13.html (7 of 19) [8/21/2000 10:50:01 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 13

The "Shortcut" Method of INSERTIing

Some implementations of Pick allow a shortcut method, which effectively allows certain unnecessary argumentsto be
omitted. The syntax changes a bit, to the general forms listed in the next two sections.

Omitting the VMC and SVMC Expressions.

This form may be used when you simply want to insert a new attribute at some location within a dynamic array:
array.variable = | NSERT(array. vari abl e, ant. expression; string.expression)

Note the first appearance of a semicolon (;) between the amc.expression and the string.expression being inserted. On
machines that allow the shortcut method, this means that the expression following the semicolon is the actual string to
be inserted into the attribute specified by the amc.expression.

Omitting the SVMC Expression.

Thisform may be used to insert a new value within a particular attribute:

array.variable = I NSERT(array. vari abl e, ant.expression ...
VITC. expressi on; string.expression)

Once again the semicolon appears in the syntax, indicating that the argument following is the string expression which
Isto be inserted into the array at the specified attribute and value locations,

The INSERT Function in Context

On lines 38 and 39 of the example program (Fig. 13-5) you are prompted to enter the string of characters you want to
insert. The response you provide is stored in the variable STRING. After checking to seeif you entered "QUIT," the
program transfers execution to local subroutine 700 (Fig. 13-6), which is used to input a number--which is, in turn,
used as the attribute position.

At line 138 the loop begins. On lines 139 and 140 you are requested to enter the attribute number, which is
subsequently stored in the variable, AMC. Line 141 checks to make sure that the response you entered was either a
numeric value or the word "QUIT." Line 142 deals with your response to quit, or falls through if you choose not to
quit.

Line 143 exists as a protective mechanism. Some implementations of Pick treat the null string as though it were
numeric, meaning that it passes through the NUM function as true. Unfortunately, the INSERT function is not quite
as sympathetic with null strings. If the INSERT function tries to insert a string into alocation indicated by a null
string, it often will report the message, "NON-NUMERIC DATA WHERE NUMERIC DATA REQUIRED!"

Line 143 checks the contents of AMC to determineif it isnull. If it isnull, then AMC is assigned the value O (zero).
On line 144 the RETURN statement isissued. This causes program execution to return to line 42, where the statement
GOSUB 800 isissued. This again sends execution off to another local subroutine (Fig. 13-7).

Thelogicisidentical to that of local subroutine 700, which requested the AMC numeric value. Coincidentally, thisis
also the samelogic for local subroutine 900, which requests the subvalue mark count, SYMC.

036 100 * I NSERT STRI NG

@37 %

038 PRINT @3,16) : "ENTER STRI NG TO | NSERT"
039 I NPUT STRI NG

040 IF STRING = "QU T" THEN STOCP

041 GOsSUB 700 ; * GET AMC NUMBER

http://www.jes.com/pb/pb_wp13.html (8 of 19) [8/21/2000 10:50:01 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 13

042 GOsUB 800 ; * GET VMC NUMBER
043 GOsSUB 900 ; * GET SVMC NUMBER
044 WORK. ARRAY = | NSERT(WORK. ARRAY, AMC, VMC, SVMC, STRI NG)

Fig 13-5 Use of the INSERT function in Program Example 11.

133 700 * GET AMC NUMBER 134 *

135 LOOP

136 PRINT @3, 18) : "ENTER ATTRI BUTE NUMBER'
137 | NPUT AMC

138 UNTIL NUM AMC) OR AMC = "QUI T* DO REPEAT

139 IF AMC = "QUI T" THEN STOP
140 IF AMC = "" THEN AMC = 0 ; * FORCE NULL TO ZERO
141 RETURN

Fig. 13-6. The logic behind local subroutine 700.

Once subroutines 700, 800, and 900 have completed their tasks, execution returns to line 44, where the following
INSERT function is performed on WORK.ARRAY :

044 WORK. ARRAY = | NSERT(WORK. ARRAY, AMC, VMC, SVMC, STRI NG)

After execution of line 44, the RETURN statement transfers execution back to line 31, the first line after the GOSUB
statement that initially transferred execution to subroutine 100. Since there is no executable code on line 31, the next
line which causes the program to do anything is line 34, which executes the statement "GOTO 10." This
unconditionally transfers execution back to the starting point of the program, where the menu of choicesis displayed
and WORK.ARRAY isdisplayed.

ABOUT THE REPLACE FUNCTION

The REPLACE function was also briefly introduced in Example 10. It istypically used to exchange the contents of a
specific location within adynamic array. Like the INSERT function, it too may add the appropriate delimiters to
accommodate your request.

Thisisthe general form of the REPLACE function:

array.vari abl e = REPLACE(array. vari abl e, ant. expression,
VITC. eXpr essi on, SvntT. expressi on, string.expression)

143 800 * GET VMC NUMBER
144 *

145 LOOP

146 PRINT @3, 19) : "ENTER VALUE NUMBER'

147 | NPUT

148 UNTIL NUMVMC) OR VMC = "QUI T* DO REPEAT

149 IF VMC = "QUI T" THEN STOP
150 IF VMC = "" THEN VMC = 0 ; * FORCE NULL TO ZERO
151 RETURN

Fig. 13-7. Thelogic behind local subroutine 800.

The REPLACE function, like the INSERT function, requires all five of the arguments within the parentheses; some

http://www.jes.com/pb/pb_wp13.html (9 of 19) [8/21/2000 10:50:01 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 13
versions of Pick do allow the "shortcut" method discussed earlier in this chapter.

The array.variable on the |eft side of the "=" assignment operator is the same as the array.variable on the right side
of the sign. The amc.expression is an expression which derives a number indicating the attribute position where the
string isto be placed. The vmc.expression is an expression which derives a number indicating the value position
within the specified attribute. The svmc.expression is an expression which contains a number indicating the subvalue
position within a specified value.

The string.expression is the expression which contains the string of characters to be replaced at some specific location
within the dynamic array. Any statement or function which produces output may be used here. Note that the special
argument, "-1", may be used interchangeably with any of the numeric expressions within the list of argumentsto
append the string to the end of the item, the end of an attribute, or to the end of avalue, asillustrated in Example 10.

The "Shortcut" Method of Replacement

Some implementations of Pick allow a"shortcut” method, which effectively allows certain unnecessary arguments to
be omitted. The syntax changes a bit, to the following general forms.

Omitting the VMC and SVMC Expressions.

Thisform may be used when you simply need to replace the contents of an entire attribute at some location within a
dynamic array:

array.variabl e = REPLACE(array. vari abl e, ant. expression; string.expression)
Note the appearance of a semicolon between the amc.expression and the string.expression being replaced. On

machines that allow the shortcut method, this means that the expression following the semicolon is the actual string to
be replaced in the attribute specified by the amc.expression.

Omitting the SVMC Expression.

Thisform may be used to replace a value within a particular attribute:

array.variabl e = REPLACE(array. vari abl e, ant.expression,
VIC. expressi on; string.expression)

Once again the semicolon appears in the syntax, indicating that the following argument is the string expression which
Isto be replaced in the array at the specified attribute and value locations.

The REPLACE Function in Context

On lines 49 and 50 of Example 11 (Fig. 13-8), you are asked to enter the string of characters you want to use to
replace an existing string. The response that you provide is stored in the variable STRING. After checking to see if
you entered "QUIT," the program transfers execution to local subroutines 700, 800, and 900 to request AMC, VMC,
and SVMC, respectively.

047 200 * REPLACE STRI NG
048 *

049 PRINT @3,16) : "ENTER STRI NG TO USE | N REPLACE"
050 I NPUT STRI NG

051 IF STRING = "QUI T" THEN STOP

052 GOsUB 700 ; * GET AMC NUMBER

053 GOsuB 800 ; * GET VMC NUMBER

054 GOsUB 900 ; * GET SVMC NUMBER

http://www.jes.com/pb/pb_wp13.html (10 of 19) [8/21/2000 10:50:01 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 13
055 WORK. ARRAY = REPLACE(WORK. ARRAY, AMC, VMC, SVMC, STRI NG

Fig. 13-8. Use of the REPLACE function in Program Example 11.

Line 55 performs the REPL ACE function. After replacing the new string into the array, execution is then returned to
line 34, where the GOTO 10 statement is executed, causing execution to transfer to the top of the program.

THE DELETE FUNCTION

The DELETE function is used to remove an attribute, value, or subvalue from adynamic array. In deleting alocation,
the corresponding delimiters that accompanied the contents of the location are also deleted. This means, for example,
that if you delete attribute two from an array, all of the following attributes effectively move "up” by one position. If
you simply want to "null out" alocation in an array, this may be done with the REPL A CE function, which does not
remove the delimiters.

Hereisthe general form of the DELETE function:

array.variabl e = DELETE(array. vari abl e, ant.expression ...
VITC. eXpr essi on, SvNT. expr essi on)

Unlike the INSERT and REPLACE functions mentioned earlier, this function requires only four arguments. The
contents of the string being deleted do not have to be known, meaning that you may delete a string from within the
array simply by indicating the el ement location you wish del eted.

The DELETE function produces a string. It isloaded, or stored, in the variable on the |eft side of the assignment
operator. Therefore, the array.variable on the left side of the "=" generally (but not always) is the same as the
array.variable on the right side. The amc.expression is an expression which contains a number indicating the attribute
position to be deleted. The vmc.expression is an expression which contains a number indicating the value position
within the specified attribute. The svmc.expression is an expression which contains a number indicating the subvalue
position within a specified value.

Note that the special argument "-1" may not be used in this function. Also, the shortcut method is not available. This
means that each argument must be provided in the expression.

Now let'slook at the DELETE function asit isused in Example 11:

058 300 * DELETE STRI NG
9594

060 PRINT @3,16) : "DELETE ELEMENT FROM ARRAY..."
061 GOsUB 700 ; * GET AMC NUMBER

062 GOsUB 800 ; * GET VMC NUMBER

063 GOsUB 900 ; * GET SVMC NUMBER

064 WORK. ARRAY = DELETE(WORK. ARRAY, AMC, VMC, SVMO)

In subroutine 300, execution is sent to local subroutines 700, 800, and 900 to request the AMC, VMC, and SYMC.
These three variables are then used in the DELETE function on line 64. After renaming execution to the top of the
program, the array reflects the change made by the DELETE function.

HOW TO TEST THE PROGRAM

By this point, you have probably experimented with Example 11. Before covering the LOCATE statement, take a
moment to perform the following steps, which will make it easier to explain and understand this function.

http://www.jes.com/pb/pb_wp13.html (11 of 19) [8/21/2000 10:50:01 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 13

1) Clear the Work Array. An option is provided on the menu to clear, or initialize, the variable WORK.ARRAY . This
is accomplished by choosing the letter C from the menu. Choosing this option causes execution to be transferred to
local subroutine 500:

126 500 * CLEAR ARRAY
127 *

128 PRINT @3, 16) : "ARRAY CLEARED"
129 WORK. ARRAY = ""

130 GOSUB 1000 ; * "PAUSE..."

131 RETURN

Line 128 simply announces the fact that the array has been cleared. Line 129 assigns anull to the variable
WORK.ARRAY, instantly replacing its former contents. Line 130 sends execution to local subroutine 1000, which
simply pauses the program and awaits a response. After the response is received, execution returns to the top of the
program.

2) Choose the | Option. Thisis how you elect to INSERT a string into the dynamic array.
3) Enter FRED at the prompt for you to enter the string.

4) Enter the attribute, value, and subvalue. At the appropriate prompt, enter these numbers, which are 1, 1, and 0,
respectively. Upon displaying the work array again, the string FRED appears. Thisisthefirst value of the first
attribute.

5) Choose the | Option. This begins the process of inserting a second string. 6) Enter BARNEY at the prompt for you
to enter the string.

6) Enter the attribute, value, and subvalue. At the appropriate prompt, enter 1, 2, and 0, respectively. Upon displaying
the work array again, the string BARNEY appears in the second value of the first attribute.

7) Enter the Remaining Data. Following the same steps as above, enter:

W LMVA

Attribute: 1
Val ue: 2
Subval ue: 0
BETTY

Attribute: |
Val ue: -1
Subval ue: 0
DI NO

Attribute: 2
Val ue: 0
Subval ue: 0

Note that when you displayed the work array after WILMA was inserted into the second value of the first attribute,
BARNEY was "pushed down" into the third value and the work array appeared as:

FRED] W LMA] BARNEY

Then the string BETTY appeared as the fourth, or last, value in attribute one. Finally the string DINO appeared as the
first (and only) value in attribute two.

The work array now appears as.
FRED] W LVA] BARNEY] BETTY~DI NO

http://www.jes.com/pb/pb_wp13.html (12 of 19) [8/21/2000 10:50:01 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 13

and you are now ready to meet the LOCATE statement. Fasten your seat belts. This may be arough ride.

THE LOCATE STATEMENT

The LOCATE statement searches for strings within adynamic array. The string it searches for may represent an entire
attribute, value, or subvalue, and the statement indicates if the string was located. The LOCATE statement has several
general forms, depending on where and how it is being applied.

For example, to retrieve an attribute requires the following general form:

LOCATE(string. expression,array. vari abl e; setting. variable)...
{THEN st atenent (s)} ELSE stat enent(s)

Thisformisillustrated in Example 11 in the following section of code:

084 CASE TYPE = "A"

085 LOCATE(STRI NG WORK. ARRAY; AMC. PCSI TI ON) THEN
086 FOUND = TRUE

087 END ELSE

088 FOUND = FALSE

089 END

In the CASE construct, responding with the letter A indicates that you are attempting to locate an attribute; this CASE
statement evaluates true and the LOCATE statement on line 85 is executed.

Using the test array you just constructed with the names that were provided, the work array appears as:

FRED] W LIVA] BARNEY] BETTY”~DI NO

Consequently, it has only two attributes.
To test this function, choose the L option to locate a string. At the prompt to ENTER A STRING, enter "DINO" and

press Return. The next prompt is:
IS IT AN (A) TTRI BUTE, (V)ALUE OR (S)UB- VALUE?

Enter an"A" and press Return.

The program now performs the LOCATE statement listed on line 85. At the time of execution, the variable STRING
contains DINO. The variable WORK.ARRAY contains

FRED] W LVA] BARNEY] BETTY~DI NO

The variable POSITION is determined by the LOCATE statement. Since the string DINO matches exactly the

contents of attribute two of the array, the LOCATE statement stores the number 2 in the variable POSITION. Had the
string not been found, POSITION would have remained unchanged.

Notice that the LOCATE statement must have the EL SE condition. This meansthat it also allows the THEN clause.
The statements following the EL SE initiator are executed when the string being located is not found. The statements
following the THEN clause are executed when the string being located is found.

Since the string you requested was found, and the attribute position at which it was found was stored in the variable
POSITION, then the THEN clause on line 86 is executed. This assigns the value TRUE to the variable FOUND.

After execution falls out of the CASE construct, the next block of code displays the string and locations:

113 | F FOUND THEN
114 PRINT @3,18) : @-3) ; * CLEAR TO END OF SCREEN

http://www.jes.com/pb/pb_wp13.html (13 of 19) [8/21/2000 10:50:01 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 13

115 PRINT @3, 18) : STRING "WAS FOUND."

116 PRINT @3, 19): "ATTRI BUTE': @15, 19): ANC. PCSI TI ON
117 PRINT @3,20): "VALUE': @15,20): VMC. POSI TI ON

118 PRINT @3, 21): "SUB-VALUE': @15,21): SVMC. POSI TI ON
119 END ELSE

120 PRINT @3,18) : @-3) : STRING "NOT FOUND'

121 END

This section does one of two things: If the string was found, then it is displayed by the statement on line 115. The
attribute, value, and subvalue positions at which it was found are displayed by lines 116, 117, and 118. If it was not
found, then line 120 displays the string along with the message that it was not found.

Locating Values within Attributes

To retrieve avalue from within an attribute requires the following general form of the LOCATE statement:

LOCATE(string. expression ,array.vari abl e, ant. expression; ...
setting.variable) {THEN statenent(s)} ELSE statenent(s)

Thisformisillustrated in Example 11 in the following section of code:

092 CASE TYPE = "V"

093 GOsuUB 700 ; * GET AMC TO SEARCH FOR VALUE

094 LOCATE(STRI NG WORK. ARRAY, AMC, VMC. PCSI TI ON) THEN
095 FOUND = TRUE

096 END ELSE

097 FOUND = FALSE

098 END

099 SVMC. PCSITION = 0O

If you respond with the letter V, which indicates that you are attempting to locate a value, then this CA SE statement
evaluates true and the LOCATE statement on line 94 is executed.

Using the test array you just constructed, you can see that attribute one has four values:
FRED] W LIVA] BARNEY] BETTY

To test this function, choose the L option to locate a string. At the prompt to enter a string, enter "BARNEY" and
press Return. The next prompt is:

IS 1T AN (A) TTRI BUTE, (V)ALUE OR (S) UB- VALUE?
Enter "V" and press Return.

The program now performs the LOCATE statement listed on line 94. At the time of execution, the variable STRING
contains BARNEY . The variable WORK.ARRAY contains:

FRED] W LMA] BARNEY] BETTY~ADI NO

The variable POSITION is determined by the LOCATE statement. Since the string BARNEY matches exactly the
contents of value three of attribute one in the array, the LOCATE statement stores the number 3 in the variable
POSITION. Had the string not been found, POSITION would have remained unchanged.

Since the string you requested was found, and the value position at which it was found was stored in the variable
POSITION, then the THEN clause on line 95 is executed. This assigns the value TRUE to the variable FOUND.

After execution falls out of the CASE construct, the next block of code spans lines 113-121 and is the routine to

http://www.jes.com/pb/pb_wp13.html (14 of 19) [8/21/2000 10:50:01 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 13
display the string and its location in the work array:

113 | F FOUND THEN
114 PRINT @3,18) : @-3) ; * CLEAR TO END OF SCREEN

115 PRINT @3, 18): STRING "WAS FOUND. "

116 PRINT @3,19) : "ATTRI BUTE": @15, 19) : ANC. POSI TI ON
117 PRINT @3,20) : "VALUE': @15,20) : VMC. PCSI TI ON

118 PRINT @3,21) : "SUB-VALUE': @15,21) : SVMC. PCSI TI ON
119 END ELSE

120 PRINT @3,18) : @- 3) : STRING "NOT FOUND'

121 END

Since the string was found, it is displayed by the statement on line 115. The attribute, value, and subvalue positions at
which it was found are displayed by lines 116, 117, and 118.

Locating Subvalues within Values

To retrieve a subvalue from within a value requires the following general form of the LOCATE statement:

LOCATE(string. expression, array. vari abl e, ant. expression,. ..
vnt. expression; setting.variable) {THEN statenent(s)} ELSE statenent(s)

Thisformisillustrated in Example 11 in the following section of code:

100 CASE TYPE = "S"

101 GCSWB 700 ; * GET AMC TO SEARCH FOR VALUE

102 GOSWB 800 ; * CGET VMC TO SEARCH FOR SUB- VALUE

103 LOCATE(STRI NG, WORK. ARRAY, AMC, VMC, SVMC. PCSI TI ON) THEN
104 FOUND = TRUE

105 END ELSE

106 FOUND = FALSE

107 END

There were no subvaluesin the array that you constructed. If you feel adventurous, reconstruct the array with one or
more subvalues and test this function.

Asan aside here, | would like to interject a controversial point: Avoid using subvalues. Now it's out in the open. The
PICK/BASIC language is well suited to manipulating the three-dimensional item (record) structure of attributes,
values, and subvalues. If you plan to write report programs in PICK/BASIC, then using subvaluesis acceptable. The
ACCESS retrieval language does not deal well with subvalues, however--and that's putting it politely. Subvalues may
seem like a convenient method of structuring data items, but if you plan to use ACCESS to produce reports on
subvalued data, be prepared for some very strange output.

USING LOCATE TO SORT STRINGS

The LOCATE statement, as introduced in this example, istypically used to search for a string within an item, and to
report the position at which it was found. The EL SE clause is executed when the string being searched for is not
found.

The LOCATE statement has the added ability to determine the position at which a string would belong within an
attribute or value. Thisinvolves the use of sequencing parameters:

Code Meani ng

http://www.jes.com/pb/pb_wp13.html (15 of 19) [8/21/2000 10:50:01 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 13

"AL' Ascending, left-justified.
"DL' Descending, left-justified.
"AR Ascending, right-justified.
"DR Descending, right-justified.

These sequencing parameters appear in the LOCATE statement immediately after the setting.variable.

The sequencing parameter you choose is a function of two things: whether the dataisto be in ascending (lowest to
highest) or descending (highest to lowest) order, and whether the data contains any alphabetic characters. L eft
justification must be used on data that contains al phabetic characters, while right justification is used exclusively on
purely numeric data. Thisis extremely important, because it has drastic effects on the sorting of data.

The various forms of the LOCATE statement, using the sequencing parameters, are illustrated in the following
genera formats.

Sorting Attributes within Items

Thisisthe general form of sequencing parameters in the LOCATE statement for sorting attributes within items:
LOCATE(string. expression, array. vari abl e; setting.variable;...

..."'sequence. paraneter') {THEN statenent(s)} ELSE statenent(s)

For example, suppose the array looked like this:

ARRAY = BARNEY"FREDW LNA

Thisindicates that there are three attributes, currently in alphabetical order. Consider the following statement:
LOCATE(" BETTY", ARRAY; PCSI TI ON; ' AL') ELSE FOUND = FALSE
When this statement is executed, the string "BETTY" is not found. Since the sequence parameter "AL" isin effect,

POSITION is assigned the value 2, since that is the position at which the string belongs, (BETTY is"higher" than
BARNEY, and "lessthan" FRED.) As aside effect, the EL SE clause is also executed, since BETTY was "not" found.

Sorting Values within Attributes

Thisisthe general form of sequencing parameters in the LOCATE statement for sorting values within attributes:
LOCATE(stri ng. expression, array. vari abl e, ant. expressi on; . ..

setting.variabl e; 'sequence.paraneter') THEN statenent(s) ELSE statenent(s)
For example, suppose the array looked like this:
ARRAY = 6666] 7777] 8888
Thisindicates that in attribute 13 of the array there are three values, which currently are in ascending numeric order.
If the following statement were executed:
LOCATE(" 8010", ARRAY, 13; POSI TION, ' AR) ELSE FOUND = FALSE
The string 8010 would not be found. Since the sequence parameter ‘AR’ isin effect, POSITION is assigned the value

3, since that is the position at which the string belongs. (8010 is"greater than" 7777, and "less than" 8888.) Asaside
effect, the EL SE clause is also executed, since 8010 was "not" found.

Sorting values within attributes is much more common than the former example of sorting attributes within items.
Thisisuseful, for example, when alist of dates or money amountsis to be stored in ascending or descending order.

http://www.jes.com/pb/pb_wp13.html (16 of 19) [8/21/2000 10:50:01 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 13

WHY YOU DON'T WANT TO SORT STRINGS WITH LOCATE

Although the power of the LOCATE statement to sort strings istempting, it is used very infrequently because
attributes which contain multivalues often have a relationship with other multivalued attributes in the same item. This
IS very common in applications.

Fil e nane = ORDER- Fl LE
Array nanme = ORDER | TEM
ltemid = 4678

Attribute Contents Pur pose

001 7777 Dat e of order

002 13 Sal esman code.

003 WL01] J336] T807 mul tivalued |list of inventory
parts that were ordered.

004 12] 4] 36 Mul tivalued list of quantities
or der ed.

005 0]4]0 Mul tivalued |ist of quantities
backor der ed.

006 1345] 677] 1898 Mul tival ued |ist of prices of

each part ordered.

Fig. 13-9. Sample use of multivaluesin items.

For instance, consider the proverbia "order" item shown in Fig. 13-9. Thistype of design is very common in Pick
applications. The phenomenon illustrated by attributes three through six goes by several names. Some people call
these parallel multivalues; others call them correlated sets. Some people call them bad design.

The point isthis: The values in each attribute have a positional correspondence with the values in the other attributes.
For instance, this hypothetical order item indicates that the customer ordered a product whose inventory part number
ISW101 (thefirst value of attribute three). It further appears that they ordered 12 of these products (the first value of
attribute four) and that O (zero) were backordered (the first value of attribute five) and finally, the cost per unit is
$13.45 (thefirst value of attribute six, which is stored in itsinternal format). Although this type of item structureis
popular among programmers and analysts, it has some serious potential side effects.

POTENTIAL SIDE EFFECTS OF PARALLEL MULTIVALUES

Note: Remember that this was written a long time ago. The following section is way out of date, in that only a few
remaining versions of Pick have item length restrictions. Most now allow unlimited item sizes. (jes 7/15/95)

All but afew implementations of Pick currently have an item size restriction. This means (at the moment) that no
single item may exceed 32K (about 32,000) bytes. For the most part, thisis not a problem_but it can be. Suppose, for
example, that the structure of itemsin the order file were like the one just illustrated. This structure works fine for the
majority of theitemsin the file, but what happens when you get an order that has 4000 or 5000 line items? Yes, thisis
exceptional, but that's the kind of problem you must anticipate. This structure has no provision for dealing with such a
case. Eventualy, the item gets so large that an "INSUFFICIENT WORK SPACE" message appears on the screen of
the operator who is entering the order, and the program enters the PICK/BASIC debugger. The operator is not
amused. At this point, there is no way to recover the item.

Fil e nanme = ORDER- HEADER- FI LE
Array nanme = ORDER HEADER
I TEM Itemid = 4678

http://www.jes.com/pb/pb_wp13.html (17 of 19) [8/21/2000 10:50:01 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 13

Attribute Contents Purpose

001 7777 Dat e of order
002 13 Sal esnman code.
003 3 Nunmber of line itens.

Fig. 13-10. Alternate item design without multival ues.

Fil e name = ORDER- DETAI L-FI LE
Array nanme = ORDER DETAIL. | TEM

l[tem | D Attribute Contents Pur pose

4678*1 (the "first" line item
001 WL01 Singl e-valued itemid of
i nventory part ordered.
002 12 Si ngl e-val ued quantity ordered.
003 0 Si ngl e-val ued quantity
backor der ed.
004 1345 Si ngl e-val ued price of part
or der ed.
4678* 2 (the "second" line item
001 J336 Single-valued itemid of
inventory part ordered.
002 4 Si ngl e-val ued quantity ordered.
003 4 Si ngl e-val ued quantity
backor der ed.
004 677 Si ngl e-val ued price of part
or der ed.
4678*3 (the "third" line item
001 T807 Single-valued itemid of
inventory part ordered.
002 36 Si ngl e-val ued quantity ordered
003 0 Si ngl e-val ued quantity
backor der ed.
004 1898 Si ngl e-val ued price of part
or der ed.

Fig. 13-11. Second half of an alternate item design without multivalues.

Another popular method of designing itemsis through the use of multiple items, rather than multiple values within an
item. Instead of keeping all of the order information in one file, the information could be spread out into two files,
such as a"order header" and "order detail" file. The "order header" file contains just the "static," single-valued

http://www.jes.com/pb/pb_wp13.html (18 of 19) [8/21/2000 10:50:01 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 13
attributes. Using the former example, this appears as shown in Fig. 13-10.
The "order detail” file contains single-valued items that represent the line items of the order. Using the data from the
previous example, there would be three separate items in this file, which would appear as shown in Fig. 13-11. Using

this technique not only removes the potential item size problem, but it also makesit easier for ACCESS to deal with
thisfile. Remember, ACCESS is only moderately friendly to multivalues, and hates subval ues.

Hprevious chapter M Next chapter - Top

Copyright © 1985-2000 Jonathan E. Sisk. It is against the law to reproduce or distribute this work in any manner or
medium without written permission of the author, ¢/o JES, Inc., P.O. Box 19274, Irvine, CA 92623, phone (949)
553-8200, fax (949) 553-9779, email: |Sisk@jes.com.

http://www.jes.com/pb/pb_wp13.html (19 of 19) [8/21/2000 10:50:01 PM]

mailto:jsisk@jes.com
http://www.jes.com/
mailto:jsisk@jes.com

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 14

(© Jonathan E. SIsk's
S Pick/BASIC: A Programmer's
Guide

\\ I \WWW Edition January, 2000

\ \ Chapter 14
A Generalized Data Entry

Program

Program example 12 employs nearly all the techniques discussed in the previous exercises. Thisisa
full-blown data entry program which may be used to add data to the STAFF file, correct existing data, and
remove unwanted data.

\\

-."- "'

Note from the author (July 21, 1995): This credit for this program should have been attributed to the late Ken
Simms long ago. It not only illustrates beautifully structured code, but is aso an example of the kind of code
generated by hisWizard 4GL, which is still commercially available today.

Enter the example program from the listing in Fig. 14-1. Asyou do, remember that the logic of the program
Is nearly as important as the program instructions used.

SETTING UP WORK ARRAYS: THE DIM STATEMENT

In Example 11, the concept of dynamic arrays was discussed in depth. The other type of array that is
availablein PICK/BASIC isreferred to as a dimensioned array. The work arrays used in our data entry
program example are of thistype:

007 * SETUP WORK ARRAYS
008 *

009 DI M SCREEN. LABELS (10)

010 DI M LABEL. COLUMN(10)

011 DI M LABEL. ROW(10)

012 DI M DATA. COLUMN(10)

013 DI M DATA. RON(10)

014 DI M | NPUT. CONVERSI ONS(10)
015 DI M OUTPUT. CONVERSI ONS(10)
016 DI M LENGTH(10)

017 DI M STAFF. | TEM 10)

Fig. 14-1. Program Example 12.

http://www.jes.com/pb/pb_wp14.html (1 of 23) [8/21/2000 10:50:07 PM]

http://www.jes.com/gifs/adsnstuf/pb2bl.jpg

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 14

EX. 012

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018

*

*

* F % ¥ X *

019 ~

020
021
022
023
024
025
026
027
028
029
030

031 *

032

033 *

034
035
036
037
038
039
040
041
042
043
044
045

FILE. I O

UPDATI NG FI LES AND | TEMS

mm dd/yy: date | ast nodified
JES: author's initials

SETUP WORK ARRAYS

DI M SCREEN. LABELS(10)

DI M LABEL. COLUMN(10)

DI M LABEL. RON(10)

DI M DATA. COLUMN(10)

DI M DATA. RON(10)

DI M | NPUT. CONVERSI ONS(10)
DI M OUTPUT. CONVERSI ONS(10)
DI M LENGTH(10)

DI M STAFF. | TEM 10)

DEFI NE CONSTANTS

PROVPT "*

EQUATE TRUE TO 1
EQUATE FALSE TO 0O
LAST. FI ELD = 7

DEFI NE VARI ABLES

EXIT. FLAG = FALSE
ERRCR. FLAG = FALSE
CURRENT. FI ELD = 1

OPEN FI LES

OPEN " STAFF" TO STAFF. FI LE ELSE
PRI NT "STAFF IS NOT' A FI LE NAME"
| NPUT ANYTHI NG

STOP

END

DEFI NE SCREEN. LABELS

SCREEN. LABELS(1) = "1 NAME"
SCREEN. LABELS(2) = "2 ADDRESS"
SCREEN. LABELS(3) = "3 C TY"
SCREEN. LABELS(4) = "4 STATE"

http://www.jes.com/pb/pb_wpl14.html (2 of 23) [8/21/2000 10:50:07 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 14

046 SCREEN. LABELS(5) = "5 ZIP"

047 SCREEN. LABELS(6) = "6 PHONE"
048 SCREEN. LABELS(7) = "7 BI RTHDAY"
0495

050 * DEFI NE LABEL. COLUWN

051 *

052 LABEL. COLUMN(1) = 3
053 LABEL. COLUMN(2) = 3
054 LABEL. COLUMN(3) = 3
055 LABEL. COLUMN(4) = 3
056 LABEL. COLUMN(5) = 3
057 LABEL. COLUMN(6) = 3
058 LABEL. COLUMN(7) = 3
059 *

060 * DEFI NE LABEL. ROW
061 *

062 LABEL. RON (1) = 4

063 LABEL. RON2) = 5
064 LABEL. RON3) = 6
065 LABEL. RON4) = 7
066 LABEL. RON5) = 8
067 LABEL. RON6) = 9
068 LABEL. RON7) = 10
069 *

070 * DEFI NE DATA. COLUWN
071 *

072 DATA. COLUMN(1) = 20
073 DATA. COLUMN(2) = 20
074 DATA. COLUMN(3) = 20
075 DATA. COLUMN(4) = 20
076 DATA. COLUMN(5) = 20
077 DATA. COLUMN(6) = 20
078 DATA. COLUMN(7) = 20
079 *

080 * DEFI NE DATA. ROW

081 *

082 DATA. RON(1) = 4
083 DATA. RON(2) = 5

084 DATA. RON3) = 6

085 DATA. RON4) = 7

086 DATA. RON(5) = 8

087 DATA. ROW(6) = O

088 DATA. RON7) = 10
089 *

090 * DEFI NE | NPUT. CONVERS| ONS
091 *

092 | NPUT. CONVERSI ONS(1) = ""

http://www.jes.com/pb/pb_wp14.html (3 of 23) [8/21/2000 10:50:07 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 14

093 | NPUT. CONVERSI ONS(2) = ""

094 | NPUT. CONVERSI ONS(3) = ""

095 | NPUT. CONVERSI ONS(4) = "P(2A)"
096 | NPUT. CONVERSI ONS(5) = "P(5N) "
097 | NPUT. CONVERSI ONS(6) = ""

098 | NPUT. CONVERSI ONS(7) = "D

099 *

100 * DEFI NE OUTPUT. CONVERSI ONS

101 *
102 OUTPUT. CONVERSI ONS(1) = ""
103 OUTPUT. CONVERSI ONS(2) = ""
104 OUTPUT. CONVERSI ONS(3)
105 OUTPUT. CONVERSI ONS(4)
106 OUTPUT. CONVERSI ONS(5)
107 OUTPUT. CONVERSI ONS(6)

108 OUTPUT. CONVERSI ONS(7) = "D2/"
109 *

110 * DEFI NE LENGTH

111 *

112 LENGTH(1) = 30

113 LENGTH(2) = 30

114 LENGTH(3) = 30

115 LENGTH(4) = 30

116 LENGTH(5) = 30

7 LENGTH(6) = 30

118 LENGTH(7) = 30

119 *

120 * MAIN PO NT OF PROGRAM

121 *

122 LOOP

123 GOSUB 1000 ; * ENTER | D AND READ | TEM
124 UNTI L EXI T. FLAG DO

125 GOSUB 2000 ; * EDIT | TEM
126 REPEAT

2 STOP ; * END OF PROGRAM

128 *

129 1000 * ENTER | D AND READ | TEM

130 *

131 PRINT @-1) : ; * CLEAR SCREEN
132 LOOP

133 PRINT @3,2) : "ENTER ITEMID OR 'QU T TO STOP
134 | NPUT STAFF. | D

135 UNTIL STAFF.ID > '' DO REPEAT
136 |F STAFF. 1D = "QUI T" THEN EXI T. FLAG = TRUE ELSE EXI T. FLAG = FALSE
137 *

138 * READ | TEM

139 *

http://www.jes.com/pb/pb_wpl14.html (4 of 23) [8/21/2000 10:50:07 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 14

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
17
¥
17
180
181
182
183
184
185

NEW | TEM FLAG = FALSE

MATREAD STAFF. | TEM FROM STAFF. FI LE, STAFF.

MAT STAFF. I TEM = ' '

NEW | TEM FLAG = TRUE
END
RETURN ; *

*

2000 * ED T | TEM

GOSUB 10000 ; * PRI NT LABELS
GOSUB 20000 ; * PRI NT DATA
| F NEW | TEM FLAG THEN

GOSUB 30000 ; * ENTER NEW I TEM
END
&OosuB 40000 ;5 *
RETURN

UPDATE COLD | TEM

*

10000 * PRI NT LABELS
*

FOR | = 1 TO LAST. FI ELD

PRI NT @ LABEL. COLUMN(|), LABEL. RON(1)):
NEXT |
RETURN

*

20000 * PRI NT DATA
*

FOR I = 1 TO LAST. FI ELD

GOsUB 25000; * PRI NT ONE DATUM
NEXT |
RETURN

*

25000 * PRI NT ONE DATUM
*

| F OQUTPUT. CONVERSI ONS(1') # "" THEN
PRI NT. VALUE = OCONV(STAFF. | TEM 1)
END ELSE
PRI NT. VALUE = STAFF. | TEM I)
END

PRI NT @ DATA. COLUMN(|), DATA. ROA(1)) : (PRI NT. VALUE) (' L#

RETURN

*

30000 * ENTER NEW I TEM
*

CURRENT. FI ELD = 1
LOOP
PRI NT @ DATA. COLUMN(CURRENT. FI ELD)

http://www.jes.com/pb/pb_wpl14.html (5 of 23) [8/21/2000 10:50:07 PM]

| D ELSE

DONE W TH ENTER | D AND READ | TEM

SCREEN. LABELS() :

, OUTPUT. CONVERSI ONS(1))

. LENGTH(1)

, DATA. RON CURRENT. FI ELD))

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 14

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

*

| NPUT ANS, LENGTH (CURRENT. FI ELD)
BEG N CASE
CASE ANS = "QUI T"
EXI'T. FLAG = TRUE
CASE ANS = ""
CURRENT. FI ELD = CURRENT. FI ELD + 1
CASE ANS = "A*"
| = CURRENT. FI ELD; GOSUB 25000; * PRI NT ONE DATUM
| F CURRENT. FI ELD >= 2 THEN CURRENT. FI ELD=CURRENT. FI ELD- 1
CASE 1
@&OsuUB 35000 ; * GET VALI DATED DATUM STORE | N STAFF. | TEM
| F NOT(ERROR. FLAG) THEN CURRENT. FI ELD = CURRENT. FI ELD + 1
END CASE
UNTI L CURRENT. FI ELD > LAST. FI ELD OR EXI T. FLAG = TRUE DO REPEAT
RETURN

35000 * CGET VALI DATED DATUM STORE I N STAFF. | TEM REPRI NT

*

*

*

I NPUT = ANS > ". QUTPUT = ANS, ERROR FLAG

| F ERROR FLAG THEN PRINT @3, 21): @-4):
ERROR. FLAG = FALSE
| F | NPUT. CONVERS| ONS(CURRENT. FI ELD) > "" THEN
TEMP = | CONV(ANS, | NPUT. CONVERSI ONS(CURRENT. FI ELD))
|F TEMP = "" THEN ; * NOT GOOD
PRINT @3,21): "UNEXPECTED FORVAT. PLEASE TRY AGAI N
ERROR. FLAG = TRUE

END ELSE
ANS = TEMP
END
END

| F NOT(ERROR. FLAG) THEN STAFF. | TEM CURRENT. FI ELD) = ANS
| = CURRENT. FI ELD;, GOSUB 25000; * PRI NT ONE DATUM
RETURN

40000 * UPDATE OLD | TEM

LOoP
PRINT @3, 20):
PRI NT "ENTER FIELD # TO CHANGE, E(X)IT, (D)ELETE, (F)ILE":
| NPUT OPTI ON
BEG N CASE
CASE NUM OPTI ON)
|F OPTION >= 1 AND OPTI ON <= LAST. FI ELD THEN
CURRENT. FI ELD = OPTI ON
PRI NT

@ DATA. COLUVN(CURRENT. FI ELD) , DATA. RON{ CURRENT. FI ELD)) :

231

| NPUT ANS, LENGTH(CURRENT. FI ELD)

http://www.jes.com/pb/pb_wpl14.html (6 of 23) [8/21/2000 10:50:07 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 14

232 IF ANS > "" THEN GOSUB 35000; * VALI DATE, STORE
233 END

234 CASE OPTION = "X" OR OPTION = "QUI T"

235 EXI'T. FLAG = TRUE

236 CASE OPTION = "D"

237 DELETE STAFF. FI LE, STAFF. | D

238 PRI NT "1 TEM DELETED"

239 CASE OPTION = "F"

240 MATWRI TE STAFF. | TEM ON STAFF. FI LE, STAFF. | D

241 END CASE

242 UNTI L | NDEX(" XDF", OPTI ON, 1) AND OPTION > "" DO REPEAT
243 RETURN

244 *

245 END

A dimensioned array is very different from a dynamic array. No DIM (dimension) statement is required for
dynamic arrays. An item read in with the READ statement is treated as one long string of characters, each of
which is delimited by the special reserved delimiters: attribute marks, value marks, and subvalue marks.
When an element from a dynamic array is referenced, the computer starts at the beginning of the string and
scans through the delimiters until the requested element is found.

For example, suppose there were adynamic array caled INVOICE.ITEM, and attribute 17 of this array
contains the following string:

W227] WB38] T456] X889

If you were to reference the third value from attribute 17 with either of the following statements:
PRI NT EXTRACT(I NvVO CE. | TEM 17, 3, 0)

or

PRI NT | NvVO CE. | TEMK17, 3>

Here's how the process would work.

The computer starts from the beginning of the array and searches for attribute marks. Once it counts 17
attribute marks, it determines that the 17th attribute has been located, and then starts to search for value
marks, until the second one is located. This might not seem like such a bad way of handling arrays, but
there's a catch. Suppose the next line of code requested the fourth value from the same attribute. Rather than
remembering where it was, the computer starts all the way back at the beginning of the item and again
searches through all of the delimiters. On small items this doesn't have a significant impact on throughpuit,
but when it comes to dealing with large items--such as those with several or more dozen attributes, many of
which contain many values and subval ues--the throughput time is a big factor.

Dynamic arrays certainly have their place in PICK/BASIC programs. They are relatively easy to manipulate
using the dynamic array reference symbols; they don't eat much (processing time) when dealing with small
items; they don't require any previous declaration; and they don't take up much room.

Dimensioned arrays, by contrast, are alittle less flexible, but the tradeoff is that they are generally much
more efficient. As an aside here, many Pick technical types have strong opinions about this issue of dynamic
versus dimensioned arrays, much as they do with regards to modulo and separation. Be advised that it may
be less potentially dangerous to discuss religion or politicsif you are looking for light conversation at a user
group meeting.

http://www.jes.com/pb/pb_wpl14.html (7 of 23) [8/21/2000 10:50:07 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 14

Recall from Chapter 7 that an array is ssmply a data structure which contains data el ements, each of which
may be referenced by a numeric subscript. A dimensioned array simply means that rather than allowing an
item with avariable number of array elements, as was the case with dynamic arrays, the program is told to
preassign space for afixed number of attributes before the array (item) is read with the MATREAD
statement. This preassignment occurs through the DIM statement, which has the general form:

DI M array. vari abl e(nunber . of . subscri pts)
For example:
DI M STAFF. | TEM 10)

This statement tells PICK/BASIC to set aside ten storage locations for this array. When the array is read with
a subsequent MATREAD statement, each attribute is loaded into its corresponding array location. This
makes it much faster to find attributes, as their locations are calculated, rather than scanned for, each time an
attribute is requested.

Some Notes on Dimensioned Arrays

Once defined as a dimensioned array, each reference to the array must be followed by a subscript indicator;
otherwise an unpleasant--and fatal--error message is displayed. Two other problems occur from time to time
in dealing with dimensioned arrays. The first, most common problem occurs when areferenceis madeto a
dimensioned array subscript that is less than one, or greater than the "last" subscript location. Here's an
example:

001 DI M STAFF. | TEM 10)
002 STAFF.|TEM 12) = DATE()

Upon execution of line 2, the program immediately breaks into the debugger and displays a message that an
attempt has been made to reference an invalid subscript location. This normally occurs when the subscript
specification is made using a variable that accidentally contains the wrong value. Note that the "problem™ of
accidentally using the wrong subscript isjust as big a problem with dynamic arrays. With dimensioned
arrays, however, the system is able to tell us we screwed up--a problem which may go undetected with
dynamic arrays.

The second problem with dimensioned arrays occurs when the array is under-dimensioned. Suppose, for
example, that the program contains the statement:

DI M STAFF. | TEM 10)
and later in the program the following statement is executed:
MATREAD STAFF. | TEM FROM STAFF. FI LE, STAFF.ID ELSE ...

If the item just read with the MATREAD statement contains more than ten attributes, you have a problem.
Each attribute from one through nine loads into the corresponding array location. Attributes ten through the
"end" of the item are stored in the "last" array location of the dimensioned array, with each attribute being
delimited by an attribute mark (just like in adynamic array). The scheme behind thislogic is that theitem
will at least survive the MATWRITE statement without truncating all the "extra’" array elements. The redl
problem occurs when you try to reference attribute ten.

| suggest that you "over-dimension” your dimensioned arrays by about five elements. This has the added
benefit of providing growth space. This means that you won't have to change all of your programs that refer
to this array when you add a new attribute to the file.

http://www.jes.com/pb/pb_wpl14.html (8 of 23) [8/21/2000 10:50:07 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 14

Referencing Dimensioned Arrays

In referring to any element within a dimensioned array, the left and right parenthesis symbols are reserved to
specify array elements. They have the following general format:

array. vari abl e(anc. expr essi on)

The amc. expression is an expression which derives a number to be treated as an Attribute Mark Count
(AMC).

For example, suppose there were a dimensioned array called STAFF.ITEM, and the following statement
were issued:

PRI NT STAFF. | TEM

The program would immediately crash and burn, leaving you the message

VARI ABLE HAS BEEN DI MENSI ONED AND USED W THOUT
SUBSCRI PTS

If, however, the following statement were issued:
PRI NT STAFF. | TEM 1)

The contents of the first array element would be printed. If it contains multiple values and/or subvalues, these
too are printed, along with their corresponding delimiters, just asin dynamic arrays. That's the end of the
similarities, however.

Two-Dimensional Arrays

Dimensioned arrays additionally alow two-dimensional DIM statements. These are rarely necessary for
business applications, but to be thorough, here is an example:

DI M TABLE(10, 10)
Thistells PICK/BASIC to set up space for atable consisting of 10 rows and 10 columns. And remember:

The first dimension has nothing to do with attributes.
The second dimension has nothing to do with multivalues.

Conseguently, | don't recommend MATREAD with two-dimensional arrays, unless you are prepared for the
pain and agony of trying to make them work with the Pick record structure.

Y ou may be wondering: "If dimensioned arrays have no syntactical provision for dealing with the
three-dimensional record structure, then how are we going to reference multivalues and subvalues within the
dimensioned arrays?' Good question. This has bothered the best philosophical minds since the beginning of
time (about 1974). The answer is (hold your breath):

You combine both dynamic and dimensioned array reference symbols!

OK, you're confused. Remember the standard syntactical form of dynamic arrays?
array. vari abl e<ant. expressi on>

or

array. vari abl e<ant. expr essi on, vnt. expr essi on>

http://www.jes.com/pb/pb_wp14.html (9 of 23) [8/21/2000 10:50:07 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 14

or

array. vari abl e<ant. expr essi on, vint. expr essi on, svnt. expr essi on>
Remember the standard syntactical form of dimensioned arrays?

array. vari abl e(anct. expr essi on)

To combine dynamic array references with dimensioned array references, you first indicate the
amc.expression, then follow it with the dynamic array symbols. For example:

PRI NT STAFF. | TEM 1) <1, 2>

Thistells PICK/BASIC to display the second value of the first attribute in the dimensioned array,
STAFF.ITEM.

Now you may be wondering, "Why did we redundantly repeat the 1, which referred to the attribute number?"
The answer is. Because we have to. Feel better?

We're told that we "have to" because of potential syntactical ambiguities. Thisisafancy way of asking how
the program would know the difference between what you just examined and this statement:

PRI NT STAFF. | TEM 1) <2>

The 1 obviously means attribute one. Y et the 2 could mean either attribute two or value two, hence the
requirement to repeat the amc.expression.

The bottom line is that when you are referring to multivalues or subvalues of a single attribute within a
dimensioned array, the first dynamic array subscript must be the number 1 (one).

The following examples are similar to the exercises that were covered earlier in the explanation of dynamic
arrays. If the following statement were executed:

PRI NT STAFF. | TEM 1) <1, 2>

The second value from the first attribute would be printed. And finally, if you were to issue the statement:
PRI NT STAFF. | TEM 1) <1, 2, 3>

The third subvalue from the second value of the first attribute would be displayed.

DEFINING THE CONSTANTS AND VARIABLES

Now that the arrays have been dimensioned, the next step that the program takes is to assign values to each
of the constants that will be required throughout the program:

019 * DEFI NE CONSTANTS
020 *

021 PROVPT "*

022 EQUATE TRUE TO 1
023 EQUATE FALSE TO O

024 LAST. FI ELD = 7

Line 21 assignsa"null" as the prompt character, line 22 equates the value of 1 to the constant TRUE, and
line 23 equates the value of 0 to the constant FALSE. Line 24 assigns the value of 7 to the constant
LAST.FIELD, which isthe number of fields in the data entry program, and is used later as the upper
boundary of a FOR-NEXT statement.

http://www.jes.com/pb/pb_wpl14.html (10 of 23) [8/21/2000 10:50:07 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 14
The next step isto assign initial values to some critical variables that are used throughout the program:

026 * DEFI NE VARI ABLES
027 *

028 EXI'T. FLAG = FALSE
029 ERROR. FLAG = FALSE
030 CURRENT. FI ELD = 1

Line 28 assigns the value FAL SE, which was equated to 0 (zero), to the variable EXIT.FLAG. Thisvariable
Isused as aflag to determine when to terminate the program. Line 29 assigns the value FAL SE to the
variable, ERROR.FLAG. This variable is used to indicate whether a problem occurred in the format of data
entry. Finally, line 30 assigns the value 1 (one), to the variable CURRENT.FIELD. This variable keeps track
of the current field (or attribute) number being processed during program execution.

OPENING THE FILES

Line 34 executes the statement to open the STAFF file for input and/or output:
032 * OPEN FI LES

033 *

034 OPEN " STAFF" TO STAFF. FI LE ELSE
035 PRI NT "STAFF IS NOT' A FI LE NAME"
036 | NPUT ANYTHI NG

037 STOP

038 END

If the fileis not found, the statements on lines 35 through 37 are executed, which advises the operator that
the file was not found, awaits a response, and then stops the program. If the file is found, execution continues
at line 39.

DEFINING PARAMETER SETS: THE DATA LABELS

Our example program illustrates an important principle in program design. It is called parameterized code.
This means that the program contains a series of "tables," in this case, dimensioned arrays. These tables
contain data (parameters) pertinent to each of the fields that will be input during data entry:

039 *

040 * DEFI NE SCREEN. LABELS

041 ~

042 SCREEN. LABELS(1) = "1 NAME"

043 SCREEN. | ABELS(2) = "2 ADDRESS"
044 SCREEN. LABELS(3) = "3 CI TY"

045 SCREEN. LABELS(4) = "4 STATE"
046 SCREEN. LABELS(5) = "5 ZIP"

047 SCREEN. LABELS(6) = "6 PHONE"
048 SCREEN. LABELS(7) = "7 Bl RTHDAY"

Thisfirst table being defined is called SCREEN.LABELS. These are the data labels that appear on the screen
to let the operator know what is being requested. Rather than "hard coding” the data labels into a series of
PRINT statements later in the program, they are gathered together in this one array. This technique tends to

http://www.jes.com/pb/pb_wpl14.html (11 of 23) [8/21/2000 10:50:07 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 14

make program maintenance much easier. The tables could even be kept in afile to make the code more
parameterized. Lines 42 through 48 assign the data labels to the appropriate locations in the
SCREEN.LABELS array.

Defining Data Label Column and Row Positions

Lines 52 through 58 each assign the value 3 to the corresponding position in the LABEL.COLUMN array.
Thistable is used later to determine the column coordinate at which to place the data labels on the screen:

050 * DEFI NE LABEL. COLUWN
051 *

052 LABEL . COLUWN (1
053 LABEL. COLUMN(2)
054 LABEL. COLUMN(3)
055 LABEL. COLUMN(4)
056 LABEL. COLUMN(5)
057 LABEL. COLUMN(6)
058 LABEL. COLUMN(7)

Lines 62 through 68 assign the row positions to the corresponding positions in the array LABEL.ROW. This
tableis used later to determine the row coordinate at which to place the data labels on the screen:

060 * DEFI NE LABEL. ROW
061 *

062 LABEL. RON(I)
063 LABEL. RO 2)
064 LABEL. ROA 3)
065 LABEL. ROW 4)
066 LABEL. RON(5)
067 LABEL. ROW(6)
068 LABEL. RON 7)

1 T | I | O Bt
w

WwWwwwwwll

P O0~NO 01~

0

Defining Display Column and Row Positions

Lines 72 through 78 assign the value 20 to the corresponding positions in the array DATA.COLUMN. This
table is used later to determine the column coordinate at which to display (and enter) the actual data for each
field on the screen:

070 * DEFI NE DATA. COLUWN
071 *

072 DATA. COLUMN(1) = 20
073 DATA. COLUMN(2) = 20
074 DATA. COLUMN(3) = 20
075 DATA. COLUMN(4) = 20
076 DATA. COLUMN(5) = 20
077 DATA. COLUMN(6) = 20

078 DATA. COLUWN (7) = 20

Lines 82 through 88 assign the row positions to the corresponding positionsin the array DATA.ROW. This
tableis used later to determine the row coordinate at which to display (and enter) the actual datafor each

http://www.jes.com/pb/pb_wpl14.html (12 of 23) [8/21/2000 10:50:07 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 14
field on the screen:

080 * DEFI NE DATA. ROW
081 *

082 DATA. RON(I)
083 DATA. RON(2)
084 DATA. RONA(3)
085 DATA. RON(4)
086 DATA. ROA(5)
087 DATA. ROA(6)
088 DATA. RON(7)

DEFINING THE INPUT AND OUTPUT CONVERSIONS

Lines 92 through 98 assign various (ACCESS) input conversion codes to the corresponding positions of the
variable INPUT.CONVERSIONS. These are used later in the program, after the data for the field is entered.

090 * DEFI NE | NPUT. CONVERSI ONS

1 e 1 T I O | A
PR Oo0o~NOo O~

0

091 *

092 | NPUT. CONVERSI ONS(1) = ""

093 | NPUT. CONVERSI ONS(2) = ""

094 | NPUT. CONVERSI ONS(3) = ""

095 | NPUT. CONVERSI ONS(4) = "P(2A)"
096 | NPUT. CONVERSI ONS(5) = "P(5N) "
097 | NPUT. CONVERSI ONS(6) = ""

098 | NPUT. CONVERSI ONS(7) = "D’

Thefirst three fields--NAME, ADDRESS, and CITY --require no special input conversions, so they are
assigned anull. Field 4, which isthe STATE field, is assigned the input conversion P(2A). This " pattern
match" conversion allows only two al phabetic characters. Field 5, the ZIP field, is assigned the input
conversion P(5N), which accepts only 5-digit numbers. Field 7, the BIRTHDAY, is assigned the D
conversion, which does the external-to- internal date conversion discussed earlier.

All of these conversions are used later to ensure that the data received isin avalid format.

Lines 102 through 107 assign null output conversions to the corresponding positions in the ruble.

100 * DEFI NE OUTPUT. CONVERSI ONS
101 *

102 OUTPUT. CONVERSI ONS(|)
103 OUTPUT. CONVERSI ONS(2)
104 OUTPUT. CONVERSI ONS(3)
105 OUTPUT. CONVERSI ONS(4)
106 OUTPUT. CONVERSI ONS(5)
107 OUTPUT. CONVERSI ONS(6)
108 OUTPUT. CONVERSI ONS(7) = "D2/"

Field 7, the BIRTHDAY, isthe only field which actually requires an output conversion. It is assigned the
ACCESS conversion D2/, which outputs the birthday in the form MM/DD/Y'Y --except in Europe, whereitis
DD/MM/YY.

http://www.jes.com/pb/pb_wpl14.html (13 of 23) [8/21/2000 10:50:07 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 14

DEFINING FIELD LENGTHS

Thisisthelast of our parameter table definitions. Lines 112 through 118 assign the value 30 to each of the
fieldsinthe array LENGTH. Thisis used later to prevent data from exceeding the suggested length:

110 * DEFI NE LENGTH
151 B ES

112 LENGTH(1) = 30
113 LENGTH(2) = 30
114 LENGTH(3) = 30
115 LENGTH(4) = 30
116 LENGTH(5) = 30
117 LENGTH(6) = 30
118 LENGTH(7) = 30

THE MAIN PROGRAM AND SUBROUTINES

Incredibly, the six lines from 122 through 127 represent the basic logic of the program:

120 * MAIN PO NT OF PROGRAM

L2 ™

122 LOOP

123 GOSUB 1000 ; * ENTER | D AND READ | TeM
124 UNTIL EXIT. FLAG DO

125 G&OsuB 2000 ; * EDIT | TEM

126 REPEAT

127 STOP ; * END OF PROGRAM

Line 122 establishes the top of the loop. Line 123 executes local subroutine 1000, which is used to request
the item-id or the word QUIT. Line 124 tests the condition of EXIT. FLAG to determineif it isO (zero) or 1
(one). If EXIT.FLAG evaluatesto 1 ("true"), then execution falls out of the loop and executes the STOP
statement on line 127. If EXIT.FLAG evaluatesto O ("false"), then line 125 executes local subroutine 2000,
which allows the item to be constructed or modified.

Pretty simple, isn't it? The good news is that this program is generalized and may easily be modified to fit
your files. All you need to do is modify this program by filling in the tables at the top of the program.

Subroutine 1000: Enter Item-ID and Read Item from File

The data entry process begins by requesting an item-id from the operator; once it is obtained, the appropriate
fileis opened for modification (Fig. 14- 2).

Line 131 clears the screen with the @(-1) function. Line 132 defines the top of the loop. The loop is used to
request either an item-id or the word QUIT. The datais then stored in the variable, STAFF.ID.

Line 135 defines the conditional logic, which repeats the loop until the response received is greater than
"null." Line 136 tests the response to determine if the operator entered the word QUIT. If QUIT was entered,
then EXIT.FLAG is assigned the value TRUE (set to 1). If QUIT was not entered, then EXIT. FLAG is
assigned the value FAL SE (set to zero).

http://www.jes.com/pb/pb_wpl14.html (14 of 23) [8/21/2000 10:50:07 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 14

129 1000 * ENTER I D AND READ | TEM
*

130

131 PRINT @-1) : ; * CLEAR SCREEN

132 LOOP

133 PRINT @3,2) : "ENTER ITEMID OR"'QUI T TO STOP"

134 | NPUT STAFF. | D

135 UNTIL STAFF. 1D > " DO REPEAT

136 | F STAFF. I D = "QUI T" THEN EXI T. FLAG=TRUE ELSE EXI T. FLAG=FALSE
3%, >

138 * READ | TEM

i3 0

140 NEW | TEM FLAG = FALSE
141 MATREAD STAFF. | TEM FROM STAFF. FI LE, STAFF. | D ELSE
142 MAT STAFF. | TEM = "

143 NEW | TEM FLAG = TRUE
144 END
145 RETURN ; * DONE WTH ENTER | D AND READ | TEM

Fig. 14-2. Subroutine to obtain avalue for STAFF.ID and retrieve the item from afile.

Line 140 sets the value of the variable NEW.ITEM.FLAG to false (zero). This happens before the item is
read, for two reasons: to ensure that the variable has been assigned a value before it is referred to later, and to
reset it after it has been set to TRUE.

Line 141 reads in the item with the MATREAD statement, which has the following general form:

MATREAD array.variable FROM fil e.vari abl e, i d. expression...
...{THEN statenent (s)} ELSE statenent(s)

The MATREAD statement is used to retrieve an item into adimensioned array. The THEN clause is
optional, and when it is used, any statements following it are executed when the item being read is found.
The EL SE clause is required; any statements following the EL SE clause are executed when the requested
item-id is not found in the file. (If you had entered the item-id 1234567, which is not currently in thefile, the
statements on lines 142 and 143 would be executed.)

Matrix Assignment with the MAT Statement

It is generally agood practice to initialize a dimensioned array to ensure that there are no "leftovers' from a
former use. Thisis accomplished with the MAT statement, which has the general form:

MAT array.variable = val ue

For example:

142 MAT STAFF. I TEM = ""

This statement assigns a null to each element of the dimensioned array, clearing each element of any former
contents.

Incidentally, one array may be assigned to another, provided they are the same size. This operation has the
general form:

MAT array.variable = MAT array. vari abl e

If the two arrays are not the same size, however, one of two possible eventsis likely to happen. If the

http://www.jes.com/pb/pb_wpl14.html (15 of 23) [8/21/2000 10:50:07 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 14

destination array (the array on the left side of the assignment operator) is larger than the source array, then
the assignment is successful; if the destination array is smaller than the source array, then the program
crashes and burns.

In the program example, if the item isn't found, the STAFF.ITEM array isinitialized on line 142. Then line
143 assigns the value TRUE (1), to the variable NEW.ITEM.FLAG, since the item was not found.

Whether the item was found or not, line 145 executes a RETURN statement, sending execution back to line
124, which checks the status of the EXIT.FLAG variable. If EXIT.FLAG isnot TRUE, then line 125 is
executed, which transfers execution to local subroutine 2000:

124 UNTIL EXIT. FLAG DO
125 GOsuUB 2000 ; * EDT I TEM

Subroutine 2000: Edit Item

Local subroutine 2000 (Fig. 14-3) is a"dispatch center" which manages the disposition of the entered item.
On line 149, the First executable statement, a GOSUB 10000 statement executes local subroutine 10000,
which appearsin the lower portion of the figure.

147 2000 * EDIT | TEM
*

148

149 GOSUB 10000 ; * PRINT LABELS
150 GOSUB 20000 ; * PRINT DATA

151 IF NEW | TEM FLAG THEN

152 GOsUB 30000 ; * ENTER NEW I TEM
153 END

154 GOSUB 40000 ; * UPDATE OLD | TEM
155 RETURN

157 10000 * PRI NT LABELS

158 >

159 FOR I = 1 TO LAST. FI ELD

160 PRI NT @ LABEL. COLUMN(I), LABEL. RON(1)) : SCREEN. LABELS(1):
161 NEXT |
162 RETURN

Fig. 14-3. Subroutinesto edit the item and print data |abels.

Thisroutine is used to print the data labels at the predefined cursor coordinates on the screen. Line 159
establishes the loop boundaries by setting the initial value of | to 1 (one) and the upper boundary to
LAST.FIELD (whichiscurrently 7).

Then line 160 positions the cursor to the coordinates derived from the arrays LABEL.COLUMN and
LABEL.ROW. Since the current value of | is 1 (one), when this statement is executed the value of
LABEL.COLUMN(I) isretrieved. Thisvalueis used as the column coordinate, or the number of character
positions from the left-hand side of the screen. The value of LABEL.ROW(]) is used to determine the fowl
or number of lines from the top of the screen. LABEL.COLUMN(I) was assigned the value 3, and
LABEL.COLUMN(I) was assigned the value 4. Consequently, the cursor is placed at position 3 on line 4 of
the screen.

Finally, the current contents of SCREEN.LABEL (1), which was assigned the value "1 NAME," is displayed

http://www.jes.com/pb/pb_wpl14.html (16 of 23) [8/21/2000 10:50:07 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 14

at the current cursor position.

Each time through the FOR-NEXT loop, | isincremented by 1 (one), until all seven of the data labels have
been displayed at their appropriate screen positions. Upon completing the display of the data labels, the
RETURN statement on line 162 is executed, transferring execution to line 150, where another GOSUB
statement is executed. Thistime, local subroutine 20000 is executed, which is the routine to print the data
elements.

Subroutine 20000: Print Data Elements

Subroutine 20000 coordinates the printing of data elements. (Fig. 14-4). To print the data elements, another
loop is established, just as before. Each time through this loop, however, execution is transferred to local
subroutine 25000, which prints the data el ement corresponding to the value of I.

164 20000 * PRI NT DATA
*

165

166 FOR I = 1 TO LAST. FI ELD

167 GOSUB 25000; * PRI NT ONE DATUM

168 NEXT |

169 RETURN

170 *

171 25000 * PRI NT ONE DATUM

172 %

173 | F QUTPUT. CONVERSI ONS(1) # "" THEN

174 PRI NT. VALUE = OCONV(STAFF. | TEM|) , OQUTPUT. CONVERSI ONS(1))

175 END ELSE

176 PRI NT. VALUE = STAFF. | TEMI)

177 END

178 PRI NT @ DATA. COLUMN(1) , DATA. ROA(1)): (PRI NT.VALUE) ('L# LENGTH(I)):
179 RETURN

Fig. 14-4. Subroutines to select and print data items.

Subroutine 25000: Print One Data Element

Subroutine 25000 (Fig. 14-4, lower portion) actually does the printing. On line 173, the current value of | is
used to test the contents of the array OUTPUT. CONV ERSIONS, to determine if there is an output
conversion to apply to the data element being printed. The logic of line 173 reads, "If thereisa conversion
code for thisfield, then execute the statement on line 174, which converts the value of the current field with
the appropriate conversion and assigns the result to the variable PRINT.VALUE. If, on the other hand, there
IS no conversion code present for thisfield, then the statement on line 176 is executed, which assigns the
value of the current field--unconverted--to PRINT.VALUE."

Thefirst part of line 178 positions the cursor to the data location using the tables DATA.COLUMN and
DATA.ROW. Thisisdone exactly as it was done before for the placement of the data labels. The second part
of line 178, which reads:

(PRI NT. VALUE) (' L#' :LENGTH(I)):

outputs the current value of PRINT.VALUE, using the mask expression derived from the LENGTH table for
the current field.

http://www.jes.com/pb/pb_wpl14.html (17 of 23) [8/21/2000 10:50:07 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 14

In this example, al of the values of the array LENGTH were set to 30. Thus, this statement is the same as
Issuing the statement:

(PRI NT. VALUE) ("L#30"):
which outputs the current value of PRINT.VALUE, left-justified in afield of 30 blanks.

Checking the NEW.ITEM.FLAG

After local subroutine 20000 finishes executing, which printed the items on the screen, the RETURN
statement is encountered. This returns execution to line 151, which checks the status of the variable
NEW.ITEM.FLAG. Thisvariable was set earlier during program execution at lines 140 (before the
MATREAD), and optionally at line 143 (if the item was not on file):

151 I F NEW I TEM FLAG THEN
152 GosuB 30000 ; * ENTER NEW I TEM
153 END

Subroutine 3000: Enter New Item

Subroutine 30000 (Fig. 14-5) is where most of the editing logic takes place. At line 183, the variable
CURRENT.FIELD is assigned the value 1 (one). This occursif the itemis"new." Thisroutine, incidentally,
iIsonly executed if NEW.ITEM.FLAG evaluatesto true.

At line 184, aloop is started. Line 185, which reads:
185 PRI NT @ DATA. COLUW] (CURRENT. FI ELD) , DATA. RON CURRENT. FI ELD)) :
181 30000 * ENTER NEW | TEM

182 *
183 CURRENT. FIELD = 1

184 LOOP

185 PRI NT @ DATA. COLUMN(CURRENT. FI ELD) , DATA. RON CURRENT. FI ELD)):
186 | NPUT ANS, LENGTH(CURRENT. FI ELD)

187 BEG N CASE
188 CASE ANS = "QUI T"

189 EXIT. FLAG = TRUE

190 CASE ANS = ""

191 CURRENT. FI ELD = CURRENT. FI ELD + 1

192 CASE ANS = "A*"

193 | = CURRENT. FI ELD; GOSUB 25000; * PRI NT ONE DATUM

194 | F CURRENT. FI ELD >=2 THEN CURRENT. FI ELD = CURRENT. FI ELD- 1
195 CASE 1

196 GOSUB 35000; * GET VALI DATED DATUM STORE | N STAFF. | TEM
197 | F NOT(ERROR. FLAG) THEN CURRENT. FI ELD = CURRENT. FI ELD + 1

198 END CASE
199 UNTIL CURRENT. FI ELD > LAST. FI ELD OR EXI T. FLAG = TRUE DO REPEAT
200 RETURN

Fig. 14-5. New-item entry subroutine.

positions the cursor to the appropriate input field location, based upon the value of CURRENT.FIELD. Then

http://www.jes.com/pb/pb_wpl14.html (18 of 23) [8/21/2000 10:50:07 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 14

line 186 executes the INPUT statement to request the value for the array location indicated by CURRENT.
FIELD. The length of the input is restricted to the corresponding value of the LENGTH array for the current
field.

After recelving the input from the operator, line 187 starts a CASE construct with a BEGIN CA SE statement
to determine how to handle the operator's response. The CASE statement on line 188 checks for the presence
of the response, QUIT. If thisresponse is received, the EXIT.FLAG variable is assigned the value TRUE,
and execution leaves the CASE construct, unconditionally executing the statement at line 199.

Line 199 defines the "until" portion of the loop. It appears as:
199 UNTIL CURRENT. FI ELD > LAST. FI ELD OR EXI T. FLAG = TRUE DO REPEAT

This specifies that either of two conditions which will terminate the loop may occur. The first condition isif
the current value of CURRENT. FIELD is greater than LAST. FIELD. If thisistrue, then it meansthat all of
the fields have been entered. The second condition is based upon the value of EXIT.FLAG. If EXIT.FLAG is
1 (true), then it means that the operator typed "QUIT." If either condition is true, the loop terminates.

The next CASE statement, at line 190, checks the response to determine if no response was provided (the
operator entered a Return < cr >. If thisisthe case, then the value of CURRENT. FIELD isincremented by 1
(one), and execution falls out of the CASE construct. None of the fields in this program are required to have
input, other than the item-id.

Line 192 executes a CASE statement to determine if the response is an up-arrow or caret ("N''). Thisis
provided as a data entry convention to allow the operator to "back up" one field. Suppose, for example, that
the NAME entry had been misspelled and that the program is now requesting the ADDRESS field. By
entering a caret, the program repositions the cursor back to the (previous) field--in this case, the "NAME"
field--and allows the operator to reenter the name.

If acaret is entered, the statement at line 193 is executed. This assigns the value of the current field to the
variable 1 and then immediately executes subroutine 25000, which reprints the value of the current field.
Upon returning from subroutine 25000, atest is performed to determine if the current value of CURRENT.
FIELD isgreater than or equal to 2. If it is, then the value of CURRENT.FIELD is decremented by 1. This
means that the """ character backs up afield at any field other than the first field.

Line 195 performs the "otherwise" case. Thisis executed upon receiving anything that was not already
detected in any of the previous CASE statements, meaning, that it isnot QUIT, null or "A". In other words,
data was entered.

When line 196 is executed, subroutine 35000 is called, which validates the response. Upon returning from
subroutine 35000, the value of ERROR. FLAG is checked. Line 197 appears as.

197 | F NOT(ERROR. FLAG THEN CURRENT. FI ELD = CURRENT. FI ELD + 1

The NOT Function

Conditional expressions normally evaluate to 1 (one), when they evaluate true and to O (zero) if false. The
NOT function reverses the effect of the conditional expression embedded within its parentheses.

For example, consider the following source line:
| F NUM RESPONSE) THEN PRI NT "NUVERI C' ELSE PRI NT " NON- NUMERI C
This meansthat if the value of RESPONSE is numeric, then the program executes the THEN clausg;

http://www.jes.com/pb/pb_wpl14.html (19 of 23) [8/21/2000 10:50:07 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 14
otherwise, if RESPONSE is not numeric, the statement after the ELSE initiator is executed.

Now examine the exact same statement using the NOT function:
| F NOT(NUM RESPONSE)) THEN PRI NT " NOT- NUVMERI C' ELSE PRI NT " NUVERI C

Thisline meansthat if the value of RESPONSE is not numeric, then the program executes the instruction
after the THEN initiator; otherwise, if RESPONSE is numeric, the statement after the EL SE initiator is
executed.

Consequently, line 197 of this program reads, "If ERROR.FLAG is not true (meaning that it must be 0), then
increment the value of CURRENT.FIELD by 1 (one)." Whether ERROR.FLAG istrue or not, the CASE
construct is terminated at line 198, and the program unconditionally executes line 199. Again, thisisthe
point at which the current value of CURRENT.FIELD is checked to determineif it is greater than
LAST.FIELD, or to determine if EXIT. FLAG istrue (1)--either of which means that it istime to leave the
loop.

Subroutine 35000: Get Validated Datum

In subroutine 35000 (Fig. 14-6), validation of the input field takes place. The first statement in the subroutine
isline 205, which is:

205 | F ERROR FLAG THEN PRINT @3,21): @-4):

Thisline checks the status of ERROR.FLAG to determineif it istrue (1). If ERROR. FLAG istrue, then the
cursor is positioned to position 3 on line 21 and the @(-4) function isissued, which clears the display from
the current cursor position to the end of the current line. Then line 206 "resets" the current value of
ERROR.FLAG to fase (0).

Line 207 tests for the presence of an input conversion for the current field. If thereis an input conversion to
be applied against the input, the statement on line 208 is executed; otherwise, execution falls through to line
216, which will be discussed shortly.

Assuming that there is an input conversion, line 208 is executed. Thisis:
208 TEMP = | CONV(ANS, | NPUT. CONVERSI ONS(CURRENT. FI ELD))

The input conversion for the current field is applied to the value of ANS. The result of the conversion is then
assigned to the temporary variable TEMP. The easiest way to determine if the input conversion worked
properly isto check the value of TEMP after the conversion. Input conversions that validate data produce a
null if they fail. For instance, if the attempted conversion was D (for "Date' ') and the response entered was
"NEW YORK CITY," then the date conversion fails, storing anull in the TEMP variable.

Line 209 is where the test on TEMP takes place. It means: If TEMP is null, then the operator blew it, in
which case the statements on lines 210 and 211 are executed. The statement on line 210 displays the message
"UNEXPECTED FORMAT. PLEASE TRY AGAIN".

202 35000 * GET VALI DATED) DATUM STORE | N STAFF. | TEM REPRI NT
203 * INPUT = ANS > "" OUTPUT = ANS, ERROR. FLAG

204 *

205 | F ERROR. FLAG THEN PRINT @3,21): @-4):

206 ERROR FLAG = FALSE

207 | F | NPUT. CONVERSI ONS(CURRENT. FI ELD) > "" THEN

208 TEMP = | CONV(ANS, | NPUT. CONVERSI ONS(CURRENT. FI ELD))

http://www.jes.com/pb/pb_wpl14.html (20 of 23) [8/21/2000 10:50:07 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 14

209 IF TEMP = "" THEN ; * NOTI' GOCD

210 PRINT @3, 21) :"UNEXPECTED FORVMAT. PLEASE TRY AGAI N'
411 ERROR. FLAG = TRUE

212 END ELSE

213 ANS = TEMP

214 END

215 END

216 | F NOT(ERROR. FLAG) THEN STAFF. | TEM CURRENT. FI ELD) = ANS
217 | = CURRENT. FI ELD, GOSUB 25000; * PRI NT ONE DATUM

218 RETURN

Fig. 14-6. Input validation subroutine.

AGAIN" at position 3 on line 21. Line 211 sets the value of ERROR.FLAG to true (1), and then falls out of
the I F statement to execute line 216.

The second possibility after testing TEMP isthat it is not null, meaning that the input conversion "worked."
If thisisthe case, then the statement on line 213 is executed. Line 213 assigns the value of the variable
TEMP to the variable ANS and then falls out of the | F statement.

Line 216 checks the status of ERROR. FLAG. If ERROR. FLAG i s not true (meaning that it is 0), the
received input is valid and the current value of ANS s assigned to the appropriate location within the array
variable STAFF.ARRAY . If ERROR.FLAG istrue (1), no assignment takes place. (After all, you don't want
to stuff garbage into the array.)

Line 217 assigns the value of CURRENT. FIELD to the variable | and then executes subroutine 25000,
which displays the datafor field "1."

This concludes subroutine 30000, which returns execution to line 154. (Don't panic; we're aimost done.) Line
154 executes subroutine 40000, which alows any field in the item to be updated.

Subroutine 40000: Update "OIld" Item

Whether theitem is"new" or not, program execution always passes through subroutine 40000 (Fig. 14-7).
This code block allows changing an individual field in the item, as

220 40000 * UPDATE OLD | TEM

221 *

222 LOOP

223 PRINT @3, 20) :

224 PRI NT "ENTER FIELD # TO CHANGE, E(X) IT, (D) ELETE, (F) I|LE":
225 | NPUT OPTI ON

226 BEG N CASE

227 CASE NUM OPTI ON)

228 |F OPTION >= 1 AND OPTI ON <= LAST. FI ELD THEN
229 CURRENT. FI ELD = OPTI ON

230 PRI NT @ (DATA. COLUVN(CURRENT. FI ELD) , DATA. RON CURRENT. FI ELD)):
231 | NPUT ANS, LENGTH (CURRENT. FI ELD)

232 |F ANS > "" THEN GOSUB 35000; * VALI DATE, STORE

233 END

234 CASE OPTION = "X" OR OPTION = "QUI T"

http://www.jes.com/pb/pb_wpl4.html (21 of 23) [8/21/2000 10:50:07 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 14

235 EXIT. FLAG = TRUE

236 CASE OPTION = "D

237 DELETE STAFF. FI LE, STAFF. | D

238 PRI NT "1 TEM DELETED"

239 CASE OPTION = "F"

240 MATVWRI TE STAFF. | TEM ON STAFF. FI LE, STAFF. I D

241 END CASE
242 UNTI L | NDEX(" XDF", OPTI ON, 1) AND OPTION > "" DO REPEAT
243 RETURN

Fig. 14-7. Update subroutine.

well as handling the logic for determining what to do with the item before returning to the top of the program
to retrieve the next item.

Line 222 starts the loop, line 223 positions the cursor to position 3 on line 20, and line 224 displays the
message;

ENTER FI ELD # TO CHANGE, E(X)IT, (D) ELETE, (F)ILE

Line 225 executes the INPUT statement to request the variable OPTION.

Once the response has been provided to OPTION, a CASE construct is started on line 226. The first CASE
statement checks the response to determine if it was a number. This indicates that the operator has chosen to
change one of the fields. Line 228 checks the number to ensure that it isavalid field number, which means
that it is greater than or equal to 1 (one) and less than the value of LAST.FIELD. If both of these conditions
evaluate to true, then lines 229 through 232 are executed.

Line 229 assigns the (numeric) value of OPTION to the variable CURRENT. FIELD, line 230 positions the
cursor at the appropriate position for the field being changed, and line 231 awaits the input, again restricting
its length to the restriction specified for thisfield by the current value of the corresponding subscript in the
LENGTH array.

After receiving the input, line 232 checks whether the response entered was null. If the response is not null
(something was entered), then subroutine 35000 is executed, which validates and stores one datum. Next,
execution falls out of the CASE construct and executes the "until” portion of the loop.

Line 234 executes the second CA SE statement. This checks the response to determine if the operator entered
"X" or "QUIT," meaning that the operator wanted to exit without updating the file. If thisisthe case, then
line 235 assigns the value of true to the variable EXIT.FLAG.

Line 236 executes the next CA SE statement, which checks the response to determineiif it isthe letter "D,"
meaning that the item is to be deleted.

THE DELETE STATEMENT

The DELETE statement is aptly named. It is used to delete an item from afile and generally has the genera
form:

DELETE array.variable,itemid

If the operator did enter the letter "D, " then the DELETE statement on line 237 is executed. This deletes the
current item from the file and then prints the message (on line 238) that the item has been deleted. After

http://www.jes.com/pb/pb_wpl14.html (22 of 23) [8/21/2000 10:50:07 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 14

completing this example, as an exercise you may want to add the logic to ask the operator if he or sheis
"sure" that they want to do this.

Note that with any of the file-access statements, the "default” file.variable option is always available, which
means that the DELETE statement possibly could take the form:

DELETE itemid

THE MATWRITE STATEMENT

Line 239 executes the final CASE statement, which checks the response for the letter "F," meaning that the
operator choseto "File" the item.

The MATREAD statement was discussed earlier in this program, noting that the statement is always used
with dimensioned arrays. Its counterpart for writing an item to afileis caled MATWRITE, which has the
general format:

MATWRI TE array.variable ON file.variable,id.expression

Notice that no THEN or EL SE clauses are required. Thisis because "writes' in the Pick System are
unconditional. As a note for those of you who came from a COBOL environment, thereisno REWRITE
statement in Pick. When Pick isinstructed to "write" an array, it does. Pick doesn't particularly care whether
or not theitem is, or was, already inthefile. It adds the itemif it isnew, or writes over the "old" item if it
was aready there. Finally, the "until" portion of the loop occurs on line 242, whichis:

242 UNTI L | NDEX(" XDF", OPTI ON, 1) AND OPTION > " DO REPEAT

This meansto repeat the loop until the response received from the operator is either the letter "X," "D," or
"F," and the response is not null. The only way out of the loop is one of the three letters just mentioned, or
the word "QUIT."

There now, that wasn't too bad, was it? Since thisis a generalized data entry program, customizing it for your
own particular needsis simple. Y ou copy the item and then change the "tables" at the beginning of the
program. The main logic is generalized, and thus does not have to be changed.

One more note: Play with this program! Test all of its features. Don't forget to test things like the "back up
one field" feature, by entering the "A" at any field. Also try to put invalid data in the fields that have input
conversions. Have fun.

#4previous chapter™ Next chapter & Top

Copyright © 1985-2000 Jonathan E. Sisk. It is against the law to reproduce or distribute this work in any

manner or medium without written permission of the author, ¢/o JES & Associates, Inc., P.O. Box 19274,
Irvine, CA 92623, phone (949) 553-8200, fax (949) 553-9779, email: |sisk@]es.com.

http://www.jes.com/pb/pb_wpl14.html (23 of 23) [8/21/2000 10:50:07 PM]

mailto:jsisk@jes.com
mailto:jsisk@jes.com

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 15

=G Jonathan E. Sisk's
28 Pick/BASIC: A Programmer's
Guide

Chapter 15
Formatting Reports and Passing
PROC Arguments

The most important principles of Pick/BASIC have been discussed in the previous examples; the
remaining program examples illustrate extensions to previous concepts and introduce a few new topics
that you may run across in your applications.

Program Example 13, for instance, covers the concept of the PROCREAD statement, which is used to
pass information from the PROC input buffer into a PICK/BASIC program. Then Example 14 shows you
why you don't want to do this.

Enter Program Example 13 from the listing in Fig. 15-1.

After entering, compiling, and cataloging EX.013, you must enter the following PROCs before the
program may be tested. It also is important that you have entered the datainto the STAFF file before
attempting to test this program.

Thefirst PROC is called atrigger PROC. It goesinto the MD, as follows:

>ED MD PROCREAD. TEST<cr >
NEW | TEM

TOP

.l <cr>

001 PQ<cr>

002 (PROCS PROCREAD. TEST) <cr >
003<cr >

TOP

. Fl <cr>

' PROCREAD. TEST' FI LED.

Fig. 15-1. Program Example 13.

EX. 013
001 * EX 013

http://www.jes.com/pb/pb_wp15.html (1 of 9) [8/21/2000 10:50:14 PM]

http://www.jes.com/gifs/adsnstuf/pb2bl.jpg

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 15

002 * Usi ng PROCREAD

003 * mm dd/yy: date last nodified

004 * JES. author's initials

005 *

006 PROCREAD BUFFER ELSE

007 PRINT "TH S MUST BE RUN FROM THE PROC CALLED PROCREAD. TEST"
008 STOP

009 END

010 *

011 BEG N. DATE = FlI ELD(BUFFER, " ", 1)

012 END. DATE = FI ELD(BUFFER, " ", 2)

013 PRI NTER FLAG = FI ELD(BUFFER, " ", 3)

014 *

015 | F PRINTER. FLAG = "" OR PRI NTER. FLAG = "Y" THEN PRI NTER ON
016 *

017 HEADI NG "' LC Bl RTHDAYS FROM' : BEG N. DATE: " TO ": END. DATE: "' L"'
018 *

019 OPEN " STAFF" TO STAFF. FI LE ELSE STOP 201, " STAFF"

020 DI M STAFF. | TEM 15)

021 *

022 1 READNEXT I TEM | D ELSE

023 PRI NTER OFF

024 PRI NT " REPORT COWPLETE. "

025 STOP

026 END

027 *

028 MATREAD STAFF. | TEM FROM STAFF. FI LE, I TEM | D ELSE

029 CRT "ITEM : ITEM. ID "IS M SSI NG FROM THE STAFF FI LE"

030 CRT "PRESS RETURN TO CONTINUE OR "QUIT" TO STOP"
031 I NPUT RESPONSE

032 | F RESPONSE = "QUI T" THEN STOP

033 GOI0 1

034 END

035 *

036 PRINT "STAFF ID: " : ITEM ID

037 PRI NT

038 PRI NT "NAME" "L#20": STAFF.ITEMI)

039 PRI NT "ADDRESS" "L#20": STAFF.|TEM 2)

040 PRINT "CI TY" "L#20": STAFF.|TEM 3)

041 PRI NT "STATE" "L#20": STAFF.|TEM 4)

042 PRINT "zI P* "L#20": STAFF.|TEM 5)

043 *

044 PRI NT "PRESS ANY KEY FOR NEXT | TeM OR <CTL> X TO QUI T"
045 PACE

046 *

047 GOTO 1

http://www.jes.com/pb/pb_wp15.html (2 of 9) [8/21/2000 10:50:14 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 15

048 *
049 END

ED PROCS PROCREAD. TEST<cr >

NEW | TEM

TOP

.l <cr>

001 PQ

002 R

003 10 OENTER BEG NNI NG DATE FOR SELECT +
004 S1

005 | P:

006 IF AL = QUT X

007 IF # A1l GO 10

008 20 OENTER ENDI NG DATE FOR SELECT +
009 S2

010
011
012
013
014
015
016
017
018
019
020 H AND W TH BI RTHDAY <=
021 A"?2

022 STON

023 HRUN BP EX. 013

024 P

025 <cr>

. Fl <cr>

' PROCREAD. TEST'" FI LED.

FIG 15-2 THE PROC CALLED PROCREAD.TEST (Install in PROCSfile).

QU T X
G0 20
YOU WANT THE REPORT PRI NTED ? (y/n=<CR>) +

A3 = QUIT X
SELECT STAFF BY NAME W TH Bl RTHDAY >=
1

> e i ol W

Testing program example 13

This PROC, upon execution, transfers to the file called PROCS and executes a PROC called
PROCREAD.TEST. Enter into the PROCS file the PROC shown in Fig. 15-2. Assuming all goes well,
the program is entered and compiled, and both PROCS are present and working. Here's how you can test
to seeif it works.

At the TCL prompt, enter:
PROCREAD. TEST<cr >

http://www.jes.com/pb/pb_wp15.html (3 of 9) [8/21/2000 10:50:14 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 15

The PROC then prompts you to enter the "beginning date," Enter:
1-1-51

The next prompt isthe "ending date." Use any date that you want.

Finally, you are prompted to answer whether you want the report pprinted. | suggest that you initially
answer the question with "N" (asin "Nope"). This happens to be the default, anyway, in case you just hit
the Return key.

After executing the SSELECT statement from the PROC, a group of one or more items may be sel ected.
If you get the message, "NO ITEMS PRESENT," return to the first step.

THE PROCREAD STATEMENT

Back in the old days, before the EXECUTE statement was introduced into the PICK/BASIC language,
whenever a"select list" of items had to be passed into a program, it had to be done from PROC.
PICK/BASIC has a statement called SELECT available, but the disadvantage of using it isthat it selects
the entire file, and no sorting or selection criteriamay be applied.

Theidea hereisthat a subset of afile needsto be gathered. In the PROC called PROCREAD.TEST, the
operator is prompted to enter the beginning and ending dates. Thisis applied in an :"externa" SELECT
(inthis case, SSELECT) statement, which :gathers: alist of item-ids in the requested sequence after
using the selection criteriato determine which items are to be selected. Once the external select
completes, the PICK/BASIC program is activated and the list is available for processing.

The PROCREAD statement is only required when one or more pieces of data have to be retrieved from
the PROC Primary Input Buffer. It does two things: First it checks to make sure that the program was
indeed activated from a PROC, and then it :reads. the contents of the Primary Input Buffer and assigns it
to avariable.

The PROCREAD statement has the following general form:
PROCREAD vari able [THEN statenent(s)] ELSE statenent(s)

When the PROCREAD statement is executed, the THEN clause is optional and the EL SE clauseis
required. The ELSE clause is executed if the program was not run from a PROC. by the way, the
statement is not smart enough to know if it was the "right PROC; it just checks to see that it was run from
a PROC.

In example 13, if the program was not executed from the PROC, the program displays an error message
and then stops the program;

006 PROCREAD BUFFER ELSE

007 PRINT "TH S MUST BE RUN FROM THE PROC CALLED PROCREAD. TEST"
008 STOP

009 END

Assuming that the program was run from the right PROC, the next executable statement occurs on line

http://www.jes.com/pb/pb_wp15.html (4 of 9) [8/21/2000 10:50:14 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 15

11.

PROCREADING THE PRIMARY INPUT BUFFER

When the PROCREAD statement "worked," it grabbed the entire contents of the Primary Input Buffer
and assigned it to the variable called BUFFER. Any variable name could have been used, but descriptive
variables do make programs easier to read.

The way datais handled in the Primary Input Buffer varies among the several implementations of Pick.
"Generic" Pick systems handle the Primary Input Buffer as one long string of characters, each of which is
delimited by a space. Some systems handle the Primary Input Buffer asif it were adynamic array.

The code in Example 13 illustrates the form that "generic" Pick systems require:

011 BEAQ N. DATE = FI ELD(BUFFER, " ", 1)
012 END. DATE = FI ELD(BUFFER, " ", 2)
013 PRI NTER FLAG = FI ELD(BUFFER, " ", 3)

Line 11 performs a FIEL D function on the BUFFER variable, which extracts all the characters up to the
first space and assigns this string to the variable BEGIN.DATE. Thisisthe "beginning date" that you
entered in the PROC.

Line 12 executes aFIELD statement, extracting all the characters between the first and second spacesin
the BUFFER variable and assigning the resulting string to the variable END.DATE. Then line 13
executes one final FIELD statement to extract the "third" string from the BUFFER variable and assign it
to the variable PRINTER.FLAG.

Shown below are the instructions that would be required on an Ultimate or McDonnell Douglas
implementation accomplish the same end resullt.

011 BEAQ N. DATE = BUFFER<| >
012 END. DATE = BUFFER<2>
013 PRI NTER FLAG = BUFFER<3>

The end result is the same: the variables BEGIN.DATE, END.DATE, and PRINTER.FLAG are
extracted from the "dynamic" array BUFFER.

Line 15 checks PRINTER.FLAG to determine if it isnull or the letter "Y." If either of these conditions
apply, the PRINTER ON statement is executed. If not, execution falls through to line 17.

THE HEADING AND FOOTING STATEMENTS

If you have ever used the HEADING or FOOTING statements in an ACCESS sentence, this statement
will be familiar. The HEADING statement is used to define the text that appears at the top of each page
of output. While you could write the code to handle page headings, footings, line counters, page
counters, and related logic, it is much easier to use the HEADING statement.

http://www.jes.com/pb/pb_wp15.html (5 of 9) [8/21/2000 10:50:14 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 15

The HEADING and FOOTING statements have the general form:
HEADI NG stri ng. expressi on

or
HEADI NG "text 'options'"

Generally, the HEADING statement is followed by a string of characters enclosed in double quotes.
Between these double quotes may be any text to appear at the top of each page, and any of the special
"options' that are available. Figure 15-3 illustrates the "standard" available options. To distinguish
"options' from "text" in the HEADING or FOOTING, the options are enclosed in single quotes. Thisis
Important to remember. Additionally, multiple options may be (and sometimes must be) enclosed in the
same set of single quotes.

The statement in example 13 appears as.
017 HEADI NG "' LC BI RTHDAYS FROM ": BEGA N. DATE: " TO ": END. DATE: "' L"'

This constructs the "heading” line as follows: First, the "L" option instructs the program to put a blank
Line at the top of each screen. Next, the heading lineisto be Centered, Note that the "C" option was
included in the same set of single quotes asthe "L" option.

Next in the heading line comes the text, "BIRTHDAY S FROM." To this heading is concatenated the
current value of the variable BEGIN.DATE. Thisisthen followed by more literal text, thistime the
string, "TO "(note the spaces before and after the word).

Next, the current value of the variable END.DATE is concatenated to the end of the heading. Finally, an
"L" option is concatenated to the end of the heading line. As mentioned earlier in this program, this
“forces' aline feed between the heading line and the first line of output on each screen or page.

Line 19 opens the STAFF file for input and/or output. If the STAFF file is not found, then the program
stops and executes error message 201, passing to it the string "STAFF." (See the discussion of the STOP
statement for more information on this feature.)

Opt i on Functi on
1C Centers the text.
‘D Retrieves the current date in the "standard"
date format. For exanple, "12 DEC 1997".
i L | ssues a line feed. Once you take control of the HEADI NG

and/ or FOOTI NG you are responsible for everything that
happens. For exanple, if you want a blank |ine between the

heading text and the "top" |line of data, then you nust
force the line feed to nake it happen.
e Retrieves the current report page nunber. Note: Consult

your ACCESS reference manual on this one. Mst versions of
Pick have a few derivatives for handling the page nunber.
TN Retrieves the current systemtine and date. For exanpl e,
"11:45:00 12 DEC 1997."

http://www.jes.com/pb/pb_wp15.html (6 of 9) [8/21/2000 10:50:14 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 15

Fig. 15-3. The "standard" options for the HEADING and/or FOOTING statements.

Line 20 dimensions the array STAFF.ITEM in anticipation of a maximum of 15 subscripts,

THE READNEXT STATEMENT

Before executing this program, the PROC called PROCREAD.TEST externally selected a group of
items, which must be dealt with one at atime. Thisiswhere the READNEXT statement comesinto play:

022 1 READNEXT | TEM | D ELSE

023 PRI NTER OFF

024 PRI NT " REPORT COWVPLETE. "
025 STCOP

026 END

The READNEXT statement has the general form:
READNEXT id.variable {THEN statenent(s)} ELSE statenent(s)

When the READNEXT statement is executed, the program extracts the top item-id off the "stack" of
item-ids created by the (external) SELECT or SSELECT statement. When this occurs successfully, the
stack of item-ids "moves up" by one--exactly like removing a plate from one of those dispensers found in
cafeterias. Theitem-id just "read" from the stack is assigned to the specified variable. In this program,
that variableis called, creatively enough, ITEM.ID.

The READNEXT statement executes its EL SE clause when it runs out of item-ids (no more plates). In
this program, when the READNEXT statement discovers that there are no more item-ids to be dealt with,
it takes the EL SE clause, which causes the statements from lines 23 through 25 to be executed. Line 23
thoughtfully remembers to tam off printer output with the PRINTER OFF statement, line 24 issues the
"REPORT COMPLETE" message, and line 25 terminates the program with a STOP statement.

READING THE ITEM: THE MATREAD STATEMENT

This routine attempts to retrieve the item corresponding to the current item-id viathe MATREAD
Sstatement:

028 MATRFAD STAFF. | TEM FROM STAFF. FI LE, I TEM | D ELSE

029 CRT "ITEM :ITEMID :" IS M SSI NG FROM THE STAFF FI LE"
030 CRT "PRESS RETURN TO CONTINUE OR 'QUIT" TO STOP" :

031 | NPUT RESPONSE

032 | F RESPONSE = "QUI T" THEN STOP

033 GOTO 1

033 END

If the MATREAD statement on line 28 fails to find the item-id in the STAFF file (which isunlikely in
this case), the statements from lines 29 through 33 are executed.

http://www.jes.com/pb/pb_wp15.html (7 of 9) [8/21/2000 10:50:14 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 15

Line 29 executes a CRT statement to route the output unconditionally to the screen. The message
displays the fact that the item-id is missing from the file, and further advises the operator to pressthe
Return key to continue or enter QUIT to stop. After requesting the response on line 31, line 32 checksto
see if the operator entered QUIT. If he did, then the program stops. If he did not enter QUIT, then the
program executes the GOTO statement on line 33, which transfers execution to statement label 1, which
attempts to retrieve the next item-id from the list.

PRINTING THE ARRAY

The following routine handles the print tasks:

036 PRINT "STAFF ID: " : ITEM ID

037 PRI NT

038 PRI NT "NAME" "L#20": STAFF.ITEMI)

039 PRI NT "ADDRESS" "L#20" : STAFF.I|TEM 2)
040 PRINT "CI TY" "L#20": STAFF.|TEM 3)

041 PRI NT "STATE" "L#20": STAFF.|TEM 4)
042 PRINT "zZI P* "L#20": STAFF.|TEM5)

Line 36 printstheliteral "STAFF ID: "and then displays the current item- id. Line 37 issues a blank line.
Line 38 printsthe literal "NAME," left- justified in afield of 20 blanks, immediately followed by the
contents of array location one, STAFF.ITEM(I). Thislogic is the same for the next four fields.

THE PAGE STATEMENT

The PAGE statement clears the screen, or issues a page gject on the printer, when a HEADING or
FOOTING isin effect:

045 PAGE

When aHEADING or FOOTING is"active" in areport program, the PAGE statement is used to handle
pagination control. This means several important things to you as the programmer. First, you do not have
to issue CHAR(12) or "@(-1)" to clear the screen (or gect a page). Second, the standard end-of-page
options are in effect; this means that pressing any key (not the Any key) advances to the next page.
Third, at any end of page, the operator may issue a"Control-X," which immediately terminates the
program. Fourth, and last, the program "figures out" the device width, based upon the current terminal or
printer characteristics as defined by the TERM command. Note that the items 2 and 3 of these features
are irrelevant when the report is being directed to the printer (spooler).

DOING IT ALL AGAIN

Line 47 unconditionally transfers execution back to statement label 1 (one) to get the next item or wrap
up the program.

http://www.jes.com/pb/pb_wp15.html (8 of 9) [8/21/2000 10:50:14 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 15

REVIEW QUIZ 13

Thisquizisismore of an essay question than fill-in-the-blanks as before. Here is your assignment:

1) Add thelogic to display the other four fields from each item in the STAFF file. These are: PHONE
(attribute 6), RENEW.DATE (attribute 7), BIRTHDAY (attribute 8), and HOURLY .RATE (attribute 9).
Note that each of these requires special handling to output.

2) Add an "item counter" to the program to display the number of the item being displayed (not the
item-id).

3) Add the logic to accumulate the total hourly rates for all the staff items. At the end of the report, on a
page all by themselves, print out the following:

a) Thetotal of all hourly rates.
b) The number of items that were processed.
¢) The average hourly rate.

4) Assume that everyone will retire at the age of 65. Display the current age of each person and
determine the number of years they have until retirement.

#previous chapter M Next chapter & Top

Copyright © 1985-2000 Jonathan E. Sisk. It is against the law to reproduce or distribute this work in any
manner or medium without written permission of the author, c/o JES, Inc., P.O. Box 19274, Irvine, CA
92623, phone (949) 553-8200, fax (949) 553-9779, email: |sisk@jes.com.

http://www.jes.com/pb/pb_wp15.html (9 of 9) [8/21/2000 10:50:14 PM]

mailto:jsisk@jes.com
http://www.jes.com/
mailto:jsisk@jes.com

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 16

Jonathan E. Sisk's
Pick/BASIC: A Programmer's Guide

WWW Edition January, 2000

Chapter 16
Using the EXECUTE Statement

Program example 13 illustrated the "old" way of performing a SELECT or SSELECT. Almost all versions of Pick now
support the EXECUTE statement.

Unfortunately, they do not all have the same syntax, although they are similar in theory.

The EXECUTE statement allows (virtually) any TCL command to be executed from a PICK/BASIC program. Upon
completion of the TCL process, the PICK/BASIC program resumes where it left off. The results or output from the TCL
process may be "passed” into the program for processing.

Program Example 14 illustrates the "uptown" method of doing the same thing that was done with Example 13.
Fig. 16-1. Program Example 14.

EX. 014

001 * EX 014

002 * Usi ng EXECUTE

003 * nmmdd/yy: date |ast nodified

004 * JES. author's initials

005 *

006 PROWPT ":"

007 *

008 PRI NT "ENTER BEG NNI NG DATE"

009 | NPUT BEG N. DATE

010 I F BEGA N. DATE = "QUI T THEN STOP

01l 14

012 PRI NT "ENTER ENDI NG DATE"

013 | NPUT END. DATE

014 | F END. DATE = "QUI T" THEN STOP

045 *

016 PRI NT "DO YOU WANT THE REPORT PRI NTED ? (Y/ N=<CR>) ":

017 | NPUT PRI NTER FLAG

018 | F PRINTER FLAG = "" OR PRI NTER. FLAG = "Y" THEN PRI NTER ON
019 *

020 SENTENCE
021 SENTENCE
022 SENTENCE
023 *

024 EXECUTE SENTENCE

\ SSELECT STAFF BY NAME W TH BI RTHDAY >= "\
SENTENCE: BEG N. DATE: \" AND W TH
SENTENCE: \ Bl RTHDAY <= "\ : END. DATE: \"\

http://www.jes.com/pb/pb_wp16.html (1 of 6) [8/21/2000 10:50:16 PM]

http://www.jes.com/gifs/adsnstuf/pb2bl.jpg

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 16

025 *

026 HEADI NG "' LC BI RTHDAYS BETWEEN ": BEG N. DATE: " AND ": END. DATE: "' L"
027 *

028 OPEN "STAFF" TO STAFF. FI LE ELSE STOP 201, " STAFF"
029 DI M STAFF. | TEM 15)

030 *

031 1 READNEXT I TEM I D ELSE

032 PRI NTER OFF

033 PRI NT "REPORT COVPLETE. "

034 STOP

035

036 *

037 MATREAD STAFF. | TEM FROM STAFF. FI LE, I TEM | D ELSE
038 CRT "ITEM : ITEM ID: " IS M SSI NG FROM THE STAFF FI LE"
039 CRT "PRESS RETURN TO CONTINUE OR "QUIT" TO STOP!
040 | NPUT RESPONSE

041 | F RESPONSE = "QUI T* THEN STOP

042 G&OT0O 1

043 END

044 *

045 PRINT "STAFF ID : " ITE .I1D

046 PRI NT

047 PRI NT "NAME" "L#20": STAFF.|TEM 1)

048 PRI NT "ADDRESS" "L#20" : STAFF.I|TEM 2)

049 PRINT "CI TY" "L#20" STAFF. | TEM 3)

050 PRI NT "STATE" "L#20" : STAFF.|TEM 4)

051 PRI NT "ZI P* "L#20" STAFF. | TEM 5)

052 *

053 PRI NT "PRESS ANY KEY FOR NEXT I TEM OR <CTL> X TO QU T "
054 PAGE

055 *

056 G&OTO 1

SISH

058 END

THE EXECUTE STATEMENT

The "generic" form of the Pick EXECUTE statement has the general format:

EXECUTE "TCL. expressi on” {RETURNI NG return. vari abl e} { CAPTURI NG capt ure.

vari abl e}

Any TCL command may be issued. Upon completion of the TCL process, execution is returned to the program at the next
statement after EXECUTE. There are two commands, however, that do not return control; one, of course, is OFF, and the

other isLOGTO.

Effectively, Program Example 14, does exactly the same thing that Example 13 did: it generates a"select list" whichis
passed into the program. The means by which the command was constructed for the EXECUTE statement were as

follows:

020 SENTENCE
021 SENTENCE
022 SENTENCE

\ SSELECT STAFF BY NAME W
SENTENCE: BEG N. DATE: \"
SENTENCE:

\ Bl RTHDAY <= "\:

TH Bl RTHDAY >=
AND W TH \

END. DATE: \"\

The SELECT and SSELECT statements have a syntactical requirement that "value strings’ used in the selection criteria

must be enclosed in double quotes.

http://www.jes.com/pb/pb_wp16.html (2 of 6) [8/21/2000 10:50:16 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 16

Suppose, for instance, that you wanted to issue the following sentence at the TCL prompt:

SSELECT STAFF W TH BI RTHDAY>="5/1/ 51" AND W TH
Bl RTHDAY<="12/1/91/"

The value strings in this sentence are "5/1/51" and "12/1/91."

To enclose quotes within aliteral string is sometimes alittle tricky. For example, attempting to print the literal:
JOE'S BAR & GRILL

by issuing the statement:
PRINT 'JCE' S BAR & GRILL'

fails the compile phase and reports the message "UNEVEN NUMBER OF DELIMITERS." This happens because of the
choice of quotesin the literal string. It may be correctly stated with the statement:

PRINT "JOE' S BAR & GRI LL"

or, the statement:
PRI NT \JOE' S BAR & GRI LL\

The """ (backslash) character istreated just like a single or double quote when used as a literal string delimiter. The
reason the backslash character was chosen instead of single quotes is that sometimes the string needs to have both single
and double quotes embedded. An example of thisiswhen you want to issue an ACCESS sentence which contains a
HEADING, such as:

>SORT STAFF BY NAME HEADI NG "' LC STAFF REPORT
PAGE ' PL""

Note that the sentence contains both single and double quotes. To treat thisas aliteral string requires the backsash as the
string delimiter. Shown below is the statement to EXECUTE this sentence:

EXECUTE \ SORT STAFF BY NAME HEADI NG "' LC STAFF
REPORT PAGE ' PL"'\

The CAPTURING Clause

The CAPTURING clause in an EXECUTE statement is used to direct the output from the TCL processinto a variable, For
example:

EXECUTE "WHO' CAPTURI NG OUTPUT
Upon execution of this EXECUTE statement, the output from the WHO verb is placed into the variable, OUTPUT.

Normally, the WHO verb produces output similar to the following:

VHO
9 JES

The "9" indicates the port number, and "JES" indicates the current account name. Now that this output is assigned to the
variable, OUTPUT, it may be manipulated or printed. For instance, if the statement:

PRI NT OQUTPUT

were issued, the following displays:
9 JES

This could al'so be manipulated with any of the functions discussed in the earlier chapters. For example, retrieving just the
port number could be accomplished with the statement:

PORT = FI ELD(QUTPUT, " ", 1)

http://www.jes.com/pb/pb_wp16.html (3 of 6) [8/21/2000 10:50:16 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 16
which retrieves al the characters up m the first space in the variable OUTPUT, and assigns it to the variable PORT.

Similarly, the account name could be extracted with the statement:
ACCOUNT = FI ELD(OQUTPUT, " ", 2)

which retrieves the string of characters from the first through the second space in the variable OUTPUT, and assignsiit to
the variable ACCOUNT.

When the CAPTURING clause "captures’ output that has more than one line, each line feed at the end of an output lineis
"converted" to an attribute mark. This effectively allows the output to be treated as a dynamic array. Here's an example:

EXECUTE "LI STU'" CAPTURI NG QUTPUT

To print each line of the output separately requires treating OUTPUT as adynamic array. Figure 16-2 illustrates this
principle.

Line 1 equates the constant ATTRIBUTE. MARK to the decimal character 254. Line 2 performs the EXECUTE
statement, routing the output to the variable OUTPUT. Line 3 is used to determine how many lines of output were
generated by the EXECUTE. Line 4 establishes a FOR-NEXT construct to loop through all the lines of output. Line 5
takes the current value of 1 and extracts the corresponding "attribute" from the dynamic array OUTPUT, After looping
through all the attributes, the program stops.

The RETURNING Clause

The optional RETURNING clause in the EXECUTE statement provides a means of dealing with error messages that are
generated as aresult of a TCL expression. When this clause is used, all error message item-ids (from the ERRM SG file)

are returned to the specified variable. When more than one error message item-id is returned, each is separated from the

others by a space (much like the Primary Input Buffer). For example:

EXECUTE " SSELECT STAFF BY NAME" RETURNI NG
ERROR. LI ST

Once the statement has been issued, the program may then be instructed to examine the list of error message item-ids.
Figure 16-3 illustrates one such technique for examining the error message item-id list.

001 EQUATE ATTRI BUTE. MARK TO CHAR(254)
002 EXECUTE "LI STU'" CAPTURI NG OQUTPUT
003 NUMBER. LI NES = DCOUNT(OUTPUT, ATTRI BUTE. MARK)

004 FOR I = 1 TO NUMBER. LI NES
005 PRI NT QUTPUT<I >
006 NEXT |

Fig. 16-2. Printing the dynamic array created with the CAPTURING clause.

001 EXECUTE " SSELECT STAFF BY NAME" CAPTURI NG OQUTPUT RETURNI NG ERRCR. LI ST
002 MAX = DCOUNT(ERRCR. LI ST," ")

003 FOR I =1 TO MAX

004 ERROR NUMBER = FI ELD(ERROR. LI ST, " ", 1)

005 BEG N CASE

006 CASE ERROR NUMBER = "210"

007 PRI NT "FILE HAS ACCESS PROTECTI ON | MPLEMENTED'
008 CASE ERROR NUMBER = "401"

009 PRI NT "NO | TEMS WERE SELECTED"

010 CASE ERROR. NUMBER = "404"

011 NUMBER. | TEMS. SELECTED = FI ELD(QUTPUT, " ", 1)
012 END CASE

013 NEXT |

http://www.jes.com/pb/pb_wp16.html (4 of 6) [8/21/2000 10:50:16 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 16
Fig. 16-3. Examining the error message item-ids.

Line 1 executes the EXECUTE statement, using both the CAPTURING and RETURNING clauses. Line 2 determines the
number of error message item-iris that were returned by the TCL command. Line 3 sets up a FOR- NEXT loop, using the
variable MAX as the upper end of the loop.

Line 4 assigns the variable ERROR.NUMBER by issuing a FIEL D function which extracts al the characters up to the
position of the space indicated by the value of I. Then line 5 establishes a CASE construct, where each of the error
message item-ids may be individually handled. (The three sample CASE statements just skim the tip of the iceberg in
terms of error handling. Naturally, much more logic may be added for each possible error condition.)

SOME IMPORTANT NOTES ABOUT EXECUTE

The EXECUTE statement builds a new "workspace" areafor each "level” of EXECUTE. For example, the first time a
program’ executes an EXECUTE statement, a block of workspace is attached, using frames from the overflow table. If this
first level of EXECUTE were to run a PICK/BASIC program that also contained an EXECUTE statement, this
"second-level" EXECUTE would also attach another set of workspace frames. As a protective mechanism, most versions
of Pick provide alimit to the number of levels of EXECUTE. The Pick AT implementation, for example, limits each
process to five levels of EXECUTE. This preventive measure is important; without it, one process could quickly "eat up"
the entire disk.

FEEDING THE EXECUTE STATEMENT

All good things come with a price tag. In the case of the EXECUTE statement, this price tag isthe DATA statement. Back
in the old days, all SELECTs and SSEL ECTs were done from the PROC language. One obscure PROC instruction, called
STON and pronounced "STack ON," was used to handle cases of issuing commands that required some further input.
These days, when | teach people about the STON instruction, | relate it to "the mighty Carnac,” the Johnny Carson
character known for histelepathic abilities. His famous shtik isto hold an envelope up to his forehead and announce, "The
answer is. .. "; then he opens the envelope to reveal the "question.”

Thisissimilar to the STON statement, which activates the Secondary Output Buffer in PROC (some people call thisthe
S.O.B. for short). When a TCL process, such asa SELECT, is executed from the Primary Output Buffer, the command to
deal with the result of the process (in this case, a select list) is placed in the Secondary Output Buffer. (Thisislike
answering the question beforeiit is asked.)

PICK/BASIC does not have asimilar requirement. Y ou don't have to worry about any of the nefarious input or output
buffers. Rather, when a process like a SELECT is executed with an EXECUTE statement, the command to deal with the
result of the processis "fed" from the DATA statement. Here are two lines of code that illustrate this principle:

001 DATA "SAVE-LI ST STAFF. LI ST"
002 EXECUTE " SSELECT STAFF BY NAME'

Note that the DATA statement containing the "answer" must occur in the program before the EXECUTE statement.

A CONTROVERSIAL STATEMENT ABOUT THE PROC
LANGUAGE

The EXECUTE statement is a much more elegant way of handling TCL processes than its predecessor, the PROC
language. One controversial point needs to be mentioned: The EXECUTE statement could single-handedly do away with
the need for the PROC language. Yes, | know, all of your reports and menus are written in PROC--but that doesn't mean
that you can't start doing thingsin PICK/BASIC with the EXECUTE statement, rather than relying on PROC interaction.
The PROC language provided a"bridge" be- tween PICK/BASIC and the ACCESS retrieval language. Now that
PICK/BASIC can "talk" to ACCESS without getting confused, PROC isreally no longer needed. The most important

http://www.jes.com/pb/pb_wp16.html (5 of 6) [8/21/2000 10:50:16 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 16
aspect of eliminating PROCs is that everything can be done in one programming language.

REVIEW QUIZ 14

1) What function does the EXECUTE statement perform?

2) What function does the CAPTURING clause perform in an EXECUTE statement?
3) What function does the HEADING statement perform?

4) What HEADING statement is required to print the following sample heading?
(top line blank)

Aged Trial Balance Report Page n

as of (dd mmm yyyy)

(blank line)

5) What function does the READNEXT function serve?

6) What function does the PAGE statement serve?

#previous chapter P Next chapter & Top

Copyright © 1985-2000 Jonathan E. Sisk. It is against the law to reproduce or distribute this work in any manner or
medium without written permission of the author, ¢/o JES, Inc., P.O. Box 19274, Irvine, CA 92623, phone (949)
553-8200, fax (949) 553-9779, email: [Sisk@jes.com.

http://www.jes.com/pb/pb_wp16.html (6 of 6) [8/21/2000 10:50:16 PM]

mailto:jsisk@jes.com
http://www.jes.com/
mailto:jsisk@jes.com

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 17

Jonathan E. SIsk's
Pick/BASIC: A Programmer's
Guide

WWW Edition January, 2000

Chapter 17
External Subroutines

Another type of subroutine is available in the Pick/BASIC language. Thisis called an external
subroutine. A subroutine is a program that contains the statements to perform an operation. In Chapter
13, you examined local subroutines; alocal subroutine isfound in the same item as the program that uses
it. An external subroutine, on the other hand is a separate item which contains program statements.
Consequently, an external subroutine may be "shared" by multiple programs. This principle assists in
making programs more modular.

Enter the programsin Fig. 17-1 and Fig. 17-2. Then compile and catalog them both.
ABOUT PROGRAM EXAMPLE 15

For Program Example 15, think of EX.015 as the master program. It "calls" the external subroutine
STRIP.CONTROL. Examine the logic of EX.015, asillustrated in Fig. 17-1.

Line 6 startsaloop. On line 7, the screen is cleared and the cursor is positioned to column position 3 on
row 3. The operator is prompted to enter a string that contains control characters. Note: When testing this
program, be careful with the control characters you use; some of them do strange things to keyboards and
terminals. A <Control-G> (the "bell' ") usually is a safe choice. Also, it is normal to not see a control
character on the screen when it is entered. Enter several non-control characters along with the control
characters, so that you will be better able to see the effect of the routine.

EX. 015

001 * EX. 015

002 * External subroutines

003 * mmidd/yy: date last nodified

004 * JES. author's initials

005 *

006 LOOP

007 PRINT @-1): @3, 3):

008 PRI NT "ENTER A STRI NG THAT CONTAI NS CONTROL CHARACTERS"
009 | NPUT STRI NG

http://www.jes.com/pb/pb_wp17.html (1 of 7) [8/21/2000 10:50:18 PM]

http://www.jes.com/gifs/adsnstuf/pb2bl.jpg

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 17

010
011
012
013
014

UNTIL STRING = "" OR STRING = "QUI T" DO
CALL STRI P. CONTROL(STRI NG)

REPEAT

PRI NT "EX. 015 TERM NATED"

END

Fig. 17-1. Program Example 15.
STRI P. CONTROL

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025

SUBROUTI NE STRI P. CONTROL(STRI NG

* STRI PS CONTROL CHARACTERS FROM STRI NG

* mmidd/yy: date last nodified

* JES: author's initials

*

STRI NG = OCONV(STRI NG, " MCP")

PRI NT "BEFORE STRI PPI NG HERE' S HOW THE STRI NG LOOKS : "
PRI NT STRI NG

PRI NT

10 * LOOP TO STRI P CHARACTERS QUT
*

NUMBER. OF. DOTS = COUNT(STRING ".") ;* HOW MANY ARE THERE?
*

FOR 1 =1 TO NUMBER OF. DOTS
FOUND = I NDEX (STRING ".", 1)
| F FOUND THEN

STRING = STRINJ 1, FOUND- 1] : STRI N FOUND+I , 33000]
PRI NT STRI NG

END ELSE

PRI NT "AFTER STRI PPI NG HERE' S HONIT LOOKS : "
PRI NT STRI NG

END

NEXT |

RETURN

Fig. 17-2. The STRIP.CONTROL external subroutine.

The string containing the control charactersis stored in the variable STRING on line 9. Line 10 checks to
seeif anull or theword "QUIT" was entered, in which case the program falls out of the loop, displays

the message "EX .0 15 TERMINATED," and then stops.

If anon-null string is received, however, line 11 is executed. This"calls' the external subroutine:

011

The CALL statement is used to locate and activate an external subroutine. It has the ability to "pass"
arguments and/or expressions into the external subroutine, which may then act upon them, change them,

CALL STRI P. CONTROL(STRI NG

and return them to the "master" program upon termination of the external subroutine.

http://www.jes.com/pb/pb_wpl7.html (2 of 7) [8/21/2000 10:50:18 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 17

The CALL statement has the general format:
CALL program name

or

CALL program nane(argunent{, argunent...})

Any optiona arguments passed from the master program must be captured by the external subroutine.
The names of the variables do not necessarily have to be the same, but they must be passed in the same

order that they are received. Any number of arguments may be passed, and each must be delimited by a
comma. Note that the list of arguments must be enclosed in parentheses.

In EX.015, only one argument was passed into the STRIP.CONTROL external subroutine. Thiswas the
variable STRING, which isthe string that contains the control characters.

CREATING AN EXTERNAL SUBROUTINE

Every externa subroutine must have the SUBROUTINE statement on the first line of the program. The
SUBROUTINE statement has the general format:

SUBROUTI NE { pr ogr am nane}

or
SUBROUTI NE { pr ogram nane} (argunent{, argunent...})

In line 1 of the subroutine, STRIP.CONTROL, the following statement appears.
001 SUBROUTI NE STRI P. CONTROL(STRI NG

This defines the program as an external subroutine and further indicates the argument to be received.

Line 6 performs an output conversion on the STRING variable, using the "MCP" conversion code:
006 STRI NG = OCONV(STRI NG " MCP")

The"MCP" conversion cede "masks' all the control characters and turns them into periods. To a
PICK/BASIC program, control characters are those characters in the ASCII ceding scheme which have a
decimal value from 1 through 31, and all of the characters above decimal 127. Unfortunately, this
happens to include the special reserved delimiters (attribute, value, and subvalue marks), so special
attention must be paid when using this function.

Line 7 displays the message:
BEFORE STRI PPI NG HERE' S HOW THE STRI NG LOCKS :

Line 8 outputs the contents of the STRING variable. All of the control characters will now appear as
periods in the string of characters that you entered.

http://www.jes.com/pb/pb_wpl17.html (3 of 7) [8/21/2000 10:50:18 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 17

STRIPPING CONTROL CHARACTERS FROM A
STRING

The heart of subroutine STRIP.CONTROL isin lines 13-24:

013 NUMBER. OF. DOTS = COUNT(STRING ".") ;* HOW MANY ARE THERE?
014 *

015 FOR | = 1 TO NUMBER. CF. DOTS

016 FOUND = I NDEX (STRING ".", 1)

017 I'F FOUND THEN

018 STRING = STRINJF 1, FOUND- 1] : STRI NG FOUND+! , 33000]
019 PRI NT STRI NG

020 END ELSE

021 PRINT "AFTER STRI PPING HERE' S HONI| T LOOKS : "
022 PRI NT STRI NG

023 END

024 NEXT |

025 RETURN

On line 13 of the subroutine, the COUNT function is used to determine the number of periods (control
characters) present in the string. The numeric value that the COUNT function returns is stored in the
variable NUMBER.OF.DOTS, which is used as the upper boundary of the FOR- NEXT statement on line
15,

On line 16, the INDEX function is called upon to search for and report the character position of the first
period in the STRING variable. If the INDEX function detects a period, the corresponding character
position at which it was found is stored in the variable FOUND.

Line 17 checks the FOUND variable to determine if it is true (non-zero and numeric), which indicates
that a period was found. If FOUND evaluates True, then the statements on lines 18 and 19 are executed,
to remove the period from the string. Line 18is:

STRING = STRI NG 1, FOUND- 1] : STRI NG FOUND+ , 33000]

Thefirst portion of thisline, whichis:
STRING = STRI NG 1, FOUND- 1]

tells the program to perform a "text extraction” (substring) function on the variable STRING, extracting
all of the characters from the first character in the string to the position indicated by the value of the
calculation "FOUND-1" (found minus one).

Suppose, for instance, that the string appeared as.

When the statement STRING = STRING[1 ,FOUND-1] is applied against this value, the number 4 is
stored in the variable FOUND, since the first period appears in the fourth character position of the string.
Consequently, in this example, the statement:

http://www.jes.com/pb/pb_wpl7.html (4 of 7) [8/21/2000 10:50:18 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 17

STRING = STRI N 1, FOUND- 1]

would be exactly the same as executing the statement:
STRING = STRIN{d I, 3]

The result of this operation is temporarily held while the second half of the statement is executed. This
second portion appears as.

STRI NG [FOUND+I , LEN(STRI NG)]

A calculated text extraction again is performed. Thistime, the beginning character position is calculated
by taking the current value of FOUND and adding 1 to it. This means that you are starting the extraction
one character past the control character (period). The number of characters to extract from this beginning
point is specified by the number 33000 (since no string can be larger than 32K anyway, this assures that
the entire string is affected). Using the same sample data as before:

The second portion would extract "..XXX" as the remaining characters in the string. Now the operation
can be completed. Again, the statement appeared as.

STRING = STRI NG 1, FOUND- 1] : STRI NG FOUND+ , 33000]

The":" (concatenation) symbol appears between the two expressions. This takes the result from the first
portion of the statement, concatenates the result of the second portion of the statement, and then stores
the result back in the STRING variable. Line 19 displays the result of the operation. There will be one
less period in the resulting string.

Thisloop is repeated until all of the control characters have been stripped from the string. Upon
removing the last period, the resulting string is displayed and the external subroutine executes the
RETURN statement on line 25. This returns execution to the next executable statement after the CALL
statement in the master program. Just like internal subroutines, each external subroutine must contain at
least one RETURN statement to return execution to the program that activated it.

Note that if the input string that was stripped of control characters had contained any "real” periods, they
too would have been stripped. This could have been prevented by storing the "original” string in a
variable and adding the following logic:

ORI G NAL = STRI NG
STRI NG = OCONV(STRI NG, " MCP")
*

*

| F FOUND AND ORI G NAL[FOUND, 1] # "." THEN ...

SOME NOTES ABOUT MODULAR CODE AND
SUBROUTINES

Making programming more modular has some distinct advantages. The program and external subroutine
in Example 15 illustrated a means of stripping control character input from the keyboard. This external

http://www.jes.com/pb/pb_wpl17.html (5 of 7) [8/21/2000 10:50:18 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 17

subroutine could be connected to every program that receives input to perform its single task. There are
many other operations that are capable of being made modular, such as verifying a date to ensure that it
iIsavalid format and within an acceptable range.

The single largest advantage to separating a self-standing operation as a module or external subroutineis
that it only hasto be coded once. This way, when you want to change the program or add a feature, it
only hasto be changed in one place. Another advantage occurs as a side effect of the first advantage.
Programs start to become smaller as sections of redundant code are removed and replaced with callsto
external subroutines.

Here's an example of amodular program:

PROGRAM MAI NLI NE
001 CALL I NITIALI ZE
002 CALL GET. DATA
003 CALL POST

004 CALL WRAPUP

Thisis modular code to the extreme, although the special -purpose routines are not shared.

Some experts argue that "in-line" code runs faster than using external subroutines. Thisistrue, but the
tradeoffs are enormous. Using "in-line" code means that every time an operation is needed, the code for
that operation is duplicated where it is needed. True "in-line" code avoids GOTO statements like the

plague.

The basis of the defense of not using external subroutinesis the overhead that isinvolved in fetching the
executable object code from disk and loading it into main memory, where it may be used. It is no secret
that the more trips that you have to make to the disk, the slower things go. In the old days, when RAM
was expensive, this argument had some merit. These days, RAM is cheap, cheap, cheap! Many
implementations of Pick allow multiple megabytes of RAM.

The nature of the Pick virtual memory manager is very friendly to external subroutines. Suppose a
program called an external subroutine. If the executable object code for that particular subroutine is not
found in main memory, then the code is located on disk and moved to an available buffer in rea

memory. Thisis known as paging or frame_faulting. If another program reguests the same object code, it
Is detected in main memory and made immediately available to the requesting program. Thisis known as
program re-entrancy.

As long asthe codeisresident in main memoryi, it is there for anyone who wants to use it. This makes for
avery strong argument in favor of using subroutines. Not only does breaking programs into subroutines
make applications more maintainable, but with large-memory systems, it is likely that the most often
used subroutines will stay in main memory, since multiple processes may be requesting them.

#previous chapter M Next chapter & Top

Copyright © 1985-2000 Jonathan E. Sisk. It isagainst the law to reproduce or distribute this work in any
manner or medium without written permission of the author, c/o JES, Inc., P.O. Box 19274, Irvine, CA
92623, phone (949) 553-8200, fax (949) 553-9779, email: [sisk@jes.com.

http://www.jes.com/pb/pb_wpl17.html (6 of 7) [8/21/2000 10:50:18 PM]

mailto:jsisk@jes.com
http://www.jes.com/
mailto:jsisk@jes.com

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 17

http://www.jes.com/pb/pb_wpl7.html (7 of 7) [8/21/2000 10:50:18 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 18

e Jonathan E. Sisk's
el Pick/BASIC: A Programmer’s
LAs S G Lide
\ \\\\ 3 WWW Edition January, 2000

\ \ Chapter 18
Additional PICK/BASIC

Concepts

This chapter covers a variety of topics which were touched on lightly, or not at all, during the tutorial
portion of the book. These include structured programming and programming standards, common
PICK/BASIC instructions not used in the tutorial, and dealing with the Dictionary level of your BP
(Basic Programs) file.

STRUCTURED PROGRAMMING

The phrase structured programming has been used to mean a collection of programming techniques
designed to make programs better. Programmers disagree on what constitutes "better." Does it mean
faster? Easier to analyze? Or something else? Some programmers prefer the term " programming
standards,” which doesn't [imit the concept to control structures. Some common programming standards
include the following:

1. Restricting the size of program structures. The ideais that something that is smaller is easier to
understand. For example:

1. Limiting the size of separately compiled programs.
2. Limiting the size of local subroutines, for instance to one printer page, so that an entire
programming function may be viewed at once.

3. Limiting the size of loops. One guideline limits loops to 20 lines, thus making it possible to
easily see the scope of the loop.

2. Restricting the numbers and kinds of program structures. For example the LOOP construct allows
many syntactical forms; limiting the choices to one (or two) forms keeps things consistent.

3. Avoiding the GOTO statement. Some experts believe that the real idea behind avoiding the GOTO
statement is to do the following:

1. Never branch into or out of an IF statement.
2. Never branch into or out of aloop.

http://www.jes.com/pb/pb_wp18.html (1 of 7) [8/21/2000 10:50:20 PM]

http://www.jes.com/gifs/adsnstuf/pb2bl.jpg

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 18

Whether or not you are a newcomer to programming, you would do well to adopt some programming
standards when you write programs.

OTHER PICK/BASIC INSTRUCTIONS

Some instructions were not discussed during the course of this book. Those instructions follow in this
section, along with a short, summary explanation of how they are used. The syntax for these instructions,
aswell asall of those covered in thetext isfound in Appendix A.

The CHAIN Statement

The CHAIN statement is somewhat similar to the EXECUTE statement, in that it allows any TCL
expression to be executed. The one major difference between CHAIN and EXECUTE isthat the
EXECUTE statement is capable of returning to the program that issued the statement, and retaining all of
the program variables. The CHAIN statement does not return to the program that executesiit.

The COM or COMMON Statement

The COM or COMMON statement is used to declare variables that are to be "shared" among external
subroutines. Thisisthe alternative to passing variables into an external subroutine as arguments
(immediately following the program name on the line that executes the CALL statement).

The common opinion about COMMON is: Don't use it. Using it makes program maintenance much more
tedious, because each time a new variable is added to one program, it must be added to all the other
programs that also will use it.

READU and MATREADU

The concept of group locks was discussed earlier in the text. The statement for reading a dynamic array
IS, of course, the READ statement, and the dimensioned array equivalent isthe MATREAD statement.

The READU and MATREADU forms of these statements cause the group in which the requested item is
found to be "group locked." These group locks remain in effect until:

1. Theitem iswritten with the appropriate "write" statement. (WRITE or MATWRITE).
2. The program terminates.
3. A RELEASE statement isissued.

Note that many of the implementations are now supporting item locks instead of just group locks.

WRITEU and MATWRITEU

The WRITEU and MATWRITEU statements differ from their "normal” counterparts in that they keep
the group lock set even after the WRITE statement.

http://www.jes.com/pb/pb_wp18.html (2 of 7) [8/21/2000 10:50:20 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 18

The ON-GOTO Statement

This statement is exactly like the ON-GOSUB statement discussed earlier, but with the difference that
execution does not automatically return to the next line after completion.

The PROCWRITE Statement

The PROCWRITE statement provides PICK/BASIC the ability to "write" astring of characters, each of
which is delimited by a space (except on Ultimate and McDonnell Douglas systems, where it is treated as
adynamic array), over the previous contents of the Primary Input Buffer.

The READV, READVU, WRITEV, and WRITEVU Statements

The READV statement istypically used by those who don't understand it. Rather than reading an entire
item in one trip to disk, like the READ or MATREAD statement did, this reads items one attribute at a
time. It has the general form:

READV vari abl e. nane FROM fil e. vari abl e, i1d. expression,
antc. expression {THEN statenent(s)} ELSE statenent(s)

Note the amc.expression following the id.expression. This tells the statement which attribute from the
array to read and store in the specified variable. This tends to be extremely wasteful. The only timeitis
allowed is when you only need one attribute from an item.

The RELEASE Statement

The RELEA SE statement is used to release one or more group locks set by the current process.

It has two general forms:
RELEASE

releases all group locks set by the current process.
RELEASE fil e.variabl e,id. expression

rel eases the group lock set on the group that the specified item residesiin.

The SYSTEM Function

Thisintrinsic function has quite a few powerful features that come in handy from time to time.,
Unfortunately, it is not consistent across all Pick systems, so consult your PICK/BASIC manual for more
information.

To illustrate some of its features, as found in "generic" Pick, here are two of the functions of SY STEM:

SY STEM(2) Returns the current page width as defined by the TERM statement:
| F SYSTEM 2) > 80 THEN ...

SY STEM(14) Returns the number of characters awaiting input in the input buffer.

http://www.jes.com/pb/pb_wp18.html (3 of 7) [8/21/2000 10:50:20 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 18

| F SYSTEM 14) THEN . ..

The NULL Statement

The NULL statement is used almost exclusively as a mate for the THEN clause in an IF-THEN-EL SE
statement. The NULL statement does absolutely nothing (thisis what technical types call a"no-op"). It
can be used as follows:

| F conditional. expression THEN NULL ELSE st at enent

Nested IF-THEN-ELSE Constructs

There are cases where "nested" |F statements are needed (Fig. 18-1). Specia caution must be applied in
terminating all of the initiators. Inevitably, you will run into something that appears even worse than this
example. Thisiswhy thereisthe CASE statement, which simplifies these situations.

This brings up an important point. With a syntactical structure that is so flexible, some problems may
crop up elsewhere; these problems typically occur by having one too many, or one too few END
statements. For example, consider this case:

| F conditional.expression THEN <cr> (starts level 1)
statenent. ..
| F conditional.expression THEN <cr> (starts |evel 2)
statenent...
| F conditional.expression THEN <cr> (starts |evel 3)
statenent. ..
END ELSE (ends | evel -3 THEN)
statenent. .. (1 evel -3 ELSE)
END
st at enent (s) (nore code may go here)
END ELSE (ends | evel -2 THEN)
statenent. .. (1 evel -2 ELSE)
st at enent (s) (nore code may go here)
END ELSE (ends | evel -1 THEN)
st at enent (l evel -1 ELSE)
END (ends | evel -1 ELSE)

Fig. 18-1, Nesting IF-THEN-EL SE structures.

001 I F conditional.expression THEN st at enent
002 | F conditional.expression THEN st at enent

003 | F condi tional . expressi on ELSE st at enent
004 st at enent

005 st at enent

006 END

007 END

008 npore code
009 nore code
010 END

http://www.jes.com/pb/pb_wp18.html (4 of 7) [8/21/2000 10:50:20 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 18

The programmer may have forgotten one of the critical END statements in the nested IF-THEN. The
effect is that the compiler erroneously thinks that the first END statement (at line 6) belongs to the third
level, that the second END statement (at line 7) belongs to the second level, and that the third END
statement (in this case, at line 10) belongs to the first level. This sneaks through the compiler without any
problem, other than the effect of not working properly.

The PRECISION Statement

The PRECISION statement declares the number of positions to be carried in mathematical calculations.
It needs to be declared only once. The normal default setting on most systemsis 4 (four), if left
undeclared. The maximum varies from system to system. Ultimate now allows a maximum of 9,
McDonnell Douglas allows 6, and the rest of the generic machines (unless they have been changed)
alow 4.

COMMENT SECTIONS REVISITED

In Chapter 2, comment sections were introduced. Many other useful pieces of information could have
been included in the comment section, but only the first four lines were used throughout the examples.
Among the other kinds of information which could be included are:

« Any externa subroutines called by the program

o Alist of files affected by the program

« A list of input variables (variables passed to alocal or external subroutine)

o A list of output variables (variables returned from alocal or external subroutine)

« Any specia processing considerations, such as the need for special forms, a tape, an external
select, etc.

« Security restrictions: port number, account name, time, date, security clearance level, etc.

« Revision history. Thisissimply alist of the last batch of changes made to the program, along with
the date and initials of the programmer who made the changes.

DICTIONARY ENTRIES FOR YOUR BP FILE

Now that you have diligently followed the convention of filling out the comments section in each of your
programs, they may be put to some practical use. Thisinvolves using the Editor to build attribute
definition itemsin the DICT (dictionary) level of the BP file, as shown in Fig. 18-2.

Since these three attributes are the only ones that are of interest for the moment, these attribute definition
items will suffice. Naturally, if you decide to use any of the other suggested itemsin your templates,
attribute definition items should be placed in the dictionary to correspond with them.

Now build the "implicit" attribute defining items, which show themselves automatically.
>COPY DI CT BP DESCRI PTI ON DATE AUTHOR<cr >

RO 2F 238G T =

http://www.jes.com/pb/pb_wp18.html (5 of 7) [8/21/2000 10:50:20 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 18

ACCESS sentences may now be used on the BP file. For example:
>SORT BP BY DATE DATE DESCRI PTI ON AUTHOR<CR>

or, for the report in order by program name:
>SORT BP<cr >

or, to direct the output to the printer, ssimply add a (P) option:
>SORT BP (P)<cr>

l[temid: DESCRI PTI ON

001 A

002 2

003 DESCRI PTI ON
004

005

006

007

008 T3, 80

009 T

010 30

ltemid: DATE

001 A

002 3

003 DATE

004

005

006

007 D2/

008 T13,8]DI (The "]" character is a value mark.
009 R

010 8

ltemid: AUTHOR

001 A

002 4

003 AUTHOR
004

005

006

007

008 T3, 3

http://www.jes.com/pb/pb_wp18.html (6 of 7) [8/21/2000 10:50:20 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 18

009 L
010 3

Fig. 18-2. Attribute definitionsin the DICT portion of the BP file.

Hprevious chapter M Next chapter - Top

Copyright © 1985-2000 Jonathan E. Sisk. It is against the law to reproduce or distribute thiswork in any
manner or medium without written permission of the author, c/o JES, Inc., P.O. Box 19274, Irvine, CA
92623, phone (949) 553-8200, fax (949) 553-9779, email: [sisk@jes.com.

http://www.jes.com/pb/pb_wp18.html (7 of 7) [8/21/2000 10:50:20 PM]

mailto:jsisk@jes.com
http://www.jes.com/
mailto:jsisk@jes.com

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Appendix B

Guide

Jonathan E. SIsk's
Pick/BASIC: A Programmer's

The following DATA items should be added to the STAFF file. This can be done using the editor, just
like you did with the tutorial programs. Alternately, if you completed program Example 12, which deals
with file input and output, then that program can be used to add these items to the STAFF file.

[tem-1d 100

001
002
003
004
005
006
007
008
009

THOVPSON, HUNTER
C/ O STARDUST HOTEL
LAS VEGAS

NV

77777

7026601000

8888

- 6500

15000

Item-1d 101

001
002
003
004
005
006
007
008
009

HEM NGAMY, ERN E
C/ O HARRY' S BAR
KEY WEST

FL

19104

3056167890

777

- 10000

25000

Item-1d 102

http://www.jes.com/pb/pb_appb.html (1 of 3) [8/21/2000 10:50:22 PM]

WWW Edition January, 2000
APPENDIX B

M STAFF FILE SAMPLE DATA
S AND DICTIONARY

http://www.jes.com/gifs/adsnstuf/pb2bl.jpg

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Appendix B

001 STEI NBECK, JOHN

002 C/ O CANNERY ROW HOTEL
003 MONTEREY

004 CA

005 94500

006 4158858880

007 6666

008 -9000

009 12500

Item-ID 103

001 ALLEN, WOODY

002 300 CENTRAL PARK WEST
003 NEW YORK

004 NY

005 10019

006 2122252412

007 6789

008 -8000

009 200000

Item-1d 104

001 TRUDEAU, GARRY
002 ¢/ O WALDEN POND
003 WALDEN

004 MA

005 08080

006 6175554444

007 7100

008 -5500

009 35000

Item-1d 106

001 KUBRI CK, STANLEY
002 C/ O STANLEY HOTEL
003 ESTES PARK

004 CO

005 80808

006 3035558888

007 7050

008 -8500

009 22500

Item-ID 107

001 HUSTON, JOHN
002 C/ O RI CKS AMERI CAN BAR

http://www.jes.com/pb/pb_appb.html (2 of 3) [8/21/2000 10:50:22 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Appendix B

003 CASABLANCA
004 CA

005 92303

006 9499987777
007 6800

008 -7700
00919500

#previous chapter M Next chapter & Top

Copyright © 1985-2000 Jonathan E. Sisk. It is against the law to reproduce or distribute thiswork in any
manner or medium without written permission of the author, c/o JES, Inc., P.O. Box 19274, Irvine, CA
92623, phone (949) 553-8200, fax (949) 553-9779, email: [sisk@jes.com.

http://www.jes.com/pb/pb_appb.html (3 of 3) [8/21/2000 10:50:22 PM]

mailto:jsisk@jes.com
http://www.jes.com/
mailto:jsisk@jes.com

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Appendix D

Jonathan E. Sisk's
Pick/BASIC: A Programmer's
Guide

WWW Edition January, 2000
APPENDIX D

PICK/BASIC Error Messages

BO programmane cat al oged

Displayed when cataloging a PICK/BASIC program.

Bl Run-tine abort at |ine |inenunber
B3 String |l ength exceeds 32,266 characters
B10 Vari abl e has not been assigned a val ue; zero used!

Displayed when executing a PICK/BASIC program that references a variable that has not previously
been referenced. Also occurs when writing dimensioned arrays that have not been "set” to null with a
MAT assignment.

Bl I Tape record truncated to tape record | ength!

This occurs in programs that write tape records when a tape record exceeds the number of bytes at which
the tape was attached.

B12 Fil e has not been opened

Indicates that aread or write operation was attempted on afile that has not previously been opened with
an OPEN statement.

B13 Null conversion code is illegal; no conversion done!

This means that the conversion code expression in an ICONV or OCONV statement evaluated to a"null”
and that it did not do exactly what was expected.

B14 Bad stack descriptor

Indicates that the number of arguments passed with a CALL statement differ from the number of

arguments in the SUBROUTINE statement in the external subroutine. Also occurs when afile variableis
used as an operand.

B15 111 egal opcode: opcode

http://www.jes.com/pb/pb_appd.html (1 of 6) [8/21/2000 10:50:29 PM]

http://www.jes.com/gifs/adsnstuf/pb2bl.jpg

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Appendix D
Try recompiling the program.
B16 Non-nuneric data when nuneric required; zero used!

Typically occurs when a mathematical function is attempted on a string variable.
B17 Array subscript out-of-range

Thisfatal error occurs when referencing a subscript less than zero or greater than the number of
subscripts (attributes) declared in the DIM or DIMENSION statement that established storage space for
the dimensioned array.

B18 Attribute nunber less than -1 is illegal

Occurs when the attribute expression of the READV or WRITEV statement evaluates to a negative
number.

B19 Il l egal pattern

Indicates a meaningless pattern inaMATCH or MATCHES statement.

B20 COL1 or COL2 used prior to executing a FIELD strut; zero

used!

This means that a reference was made to either the COL1 () or COL2 () functions prior to issuing a
FIELD statement.

B22 |11l egal value for STORAGE st at enent

Indicates that an argument of the STORAGE statement is less than 10, or not divisible by 10.

B23 Program programmane nust be reconpil ed

Means that the object code being executed is not compatible with the current release of the operating
system.

B24 Divide by zero illegal; zero used!

Thisindicates that a number was attempted to be divided by zero. Check the divisor to make sure that it
has been assigned a value.

B25 Program programane has not been cat al oged

This message displays when a CALL statement is issued, referring to an external PICK/BASIC program
subroutine which has not been catal oged.

B26 UNLOCK attenpted before LOCK

Thisindicates that an attempt was made to UNLOCK one of the 48 system execution locks prior to its
having been locked.

B27 RETURN executed with no GOSUB

Thistypically occurs when an internal subroutine is executed without having been transferred to with a
GOSUB statement, causing the RETURN statement to force this error.

B28 Not enough work space

Thistypically occurs when running alarge PICK/BASIC program that may be dealing with one or more

http://www.jes.com/pb/pb_appd.html (2 of 6) [8/21/2000 10:50:29 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Appendix D

large data items. Program sizeis limited to 32,000 bytes. The solution isto break the program into
smaller subroutines until this limitation is removed from the Pick System.

B30 Array size m snmatch
This occurs when a mainline program and an external subroutine both refer to the same dimensioned

array, but each declares a different number of attributes. Also occursina"MAT copy" (MAT A = MAT
B) when the number of vectors are different.

B31 Stack overfl ow

This occurs when a program calls too many nested subroutines.
B32 Page headi ng exceeds maxi num of 1400 characters

A HEADING statement in PICK/BASIC cannot exceed 1400 characters.

B33 Precision declared in subprogram programane is different from
that declared in the mainline program

Thisindicates that there is a PRECISION statement in an external subroutine that specifies adifferent
number of decimal places than that of the PRECISION statement in the mainline program.

B34 File variabl e used where string expressi on expected

This indicates that some reference was made to a variable that has been declared as afile variable in an
OPEN statement.

B41 Lock nunber is greater than 47

This means that the expression evaluated in the LOCK statement contained a number greater than 47.
PICK/BASIC divides the number by 48 and the remainder is used as the lock number.

B100 Conpi |l ati on aborted; no object code produced

Thisis displayed when a compile fails for any reason. As ageneral nile of thumb, ignore all but the first
message that displays when a compile fails. Find and fix the problem indicated with the first message and
then recompile.

B101 Anbi guous ELSE cl ause

Thisindicates that a statement with an optional EL SE clause is used in asingle-line | F statement.

B102 Bad st at enent

This compile-time error indicates that there is something syntactically wrong with the line displayed
immediately above this message. Look for misspelled statements and/or unclosed quotes or parentheses.
B103 Label |abel is m ssing

Displayed when a GOTO statement refers to a statement label that cannot be located in the program.
Make sure that the statement label is the first executable parameter on the line. If it follows an asterisk,

for example, it will never be seen by the compiler. This also occurs when areference to a dimensioned
array is made without indicating a subscript (vector).

B104 Label |abel is doubly defined

Indicates that there are two occurrences of the same statement |abel.

http://www.jes.com/pb/pb_appd.html (3 of 6) [8/21/2000 10:50:29 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Appendix D

B105 vari abl e has not been di nensi oned

This displays when a non-dimensioned variable is treated as a dimensioned variable.

B106 vari abl e has been di nensi oned and used w t hout

subscri pts

Thisis displayed when areference is made to a dimensioned array without being followed by a subscript
(attribute) specification.

B107 LOOP statenent nested too deep

Indicates that a L OOP statement is nested within too many outer L OOP statements.
B109 Variable mssing in "NEXT" statenent

This occurs when the NEXT statement is not followed by the variable declared in the FOR statement.
B110 END st atenent m ssing

This often occurs when the END statements do not "balance” in a program, meaning that there may be a
missing END statement somewhere in a series of IF-THEN clauses.

B111 EXI T used outside of LOOP statenent

Indicates that an EXIT statement occurred outside of a LOOP / REPEAT clause.
Bl 12 REPEAT mi ssing in LOOP statenent

This means that the REPEAT statement cannot be located for the initiating L OOP statement.
Bl 13 Term nator m ssi ng

This displays when aline containing quoted literals is missing one or more of the quote marks, or when
"garbage" follows alega statement.

Bl 14 Maxi mum nunber of vari abl es exceeded

PICK/BASIC alows for about 3200 variablesin aprogram. Thisis normally enough for most people. If
not, try moving some of the variables to an external subroutine.

B115 | abel | abel is used before the equate statenent

This occurs when areference is made to a constant prior to its being declared with the EQU or EQUATE
statement.

Bl 16 | abel |abel is used before the COVMMON st nt

All variables must be declared in the COM or COMMON statement prior to being used in a program.
This can be avoided, as can other problems, by not using the COMMON statement.

Bl 17 | abel | abel is mssing a subscript |ist

This displays when areference is made to a dimensioned array variable without indicating a subscript
(attribute) specification.

Bl 18 | abel |abel is the object of an EQUATE statenent and is
m ssi ng

http://www.jes.com/pb/pb_appd.html (4 of 6) [8/21/2000 10:50:29 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Appendix D

Indicates that the variable after the TO portion of an EQU statement has not been declared, or is used
elsawhere in the program.

Bl 19 Warni ng - precision value out of range - ignored

Indicates that a precision less than zero (0) or greater than nine (9) was attempted.
B120 Warning - nultiple precision statenents - ignored!

This non-fatal error message indicates that more than one PRECISION statement is specified in the
program. All but the first are ignored.

B121 Label | abel is a constant and cannot be witten into.

This occurs when an attempt is made to change the value of a constant declared in an EQU or EQUATE
statement.

B122 Label |abel is inproper type

Indicates an invalid expression follows the TO in an EQU or EQUATE statement.
B124 Label |abel has literal subscripts out of range

Indicates a reference to a subscript (attribute) greater than the number of subscripts declared for the array
inthe DIM or DIMENSION statement; alternately, may indicate a subscript of less

B125 No source statenents found; no object code produced

Indicates a source item with no source lines.
B126 ELSE cl ause m ssing

Indicates that an EL SE clause is missing in a statement where it is required.
B127 NEXT m ssi ng

Indicates that the NEXT statement in a FOR-NEXT loop is missing.
B128 Itemitemane not found

I ndi cates that the itemname specified in an SINCLUDE or $CHAIN directive has been omitted.
B129 Il 1l egal: program nane sane as dictionary item nane

There may not be a program in afile with the same name asthefile.

B199 Source file must have separate DI CT and DATA
sections

Indicates that the PICK/BASIC source file has only adictionary level. A data section must be created.
B209 File is update protected

Indicates that an update (write operation) was attempted on an update- restricted file.
B210 File is access protected

Indicates that a read operation was attempted on a read-restricted file.
B222 "CSYM is not a file nane or needs a data | evel

http://www.jes.com/pb/pb_appd.html (5 of 6) [8/21/2000 10:50:29 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Appendix D

This displays when the pointer to the CSYM file is missing or improperly defined in the MD

#previous chapter M Next chapter & Top

Copyright © 1985-2000 Jonathan E. Sisk. It is against the law to reproduce or distribute thiswork in any

manner or medium without written permission of the author, ¢/o JES & Associates, Inc., P.O. Box
19274, Irvine, CA 92623, phone (949) 553-8200, fax (949) 553-9779, email: [sisk@jes.com.

http://www.jes.com/pb/pb_appd.html (6 of 6) [8/21/2000 10:50:29 PM]

mailto:jsisk@jes.com
mailto:jsisk@jes.com

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Appendix E

Jonathan E. SIsk's
Pick/BASIC: A Programmer's
Guide

The Pick/BASIC Interactive
Debugger

The Pick/BASIC Debugger is used for tracing execution and variables during the runtime of Pick/BASIC
programs.

Symbol Definitions

Each variable referred to in a program produces a symbol, which is used to refer to that particular
variable throughout the rest of the program and through functions within the debugger. The symbol
definitions are automatically defined during the compile process and are with the executabl e object code
in the dictionary level of the program file.

Activating the Pick/BASIC Debugger

The Pick/BASIC debugger is basically activated one of two ways, either voluntarily or involuntarily.

Voluntary Debugger Entry.

In the voluntary form, the debugger is entered upon pressing the break key while running a Pick/BASIC
program. It may also be entered prior to execution of a program with the "D" option:

>RUN BP HELLO (D)<cr> *E1

If the program has been catal oged, then this form changes to:

>HELLO (D) <cr>
El

*

If the program has been cataloged , then this changes to:

http://www.jes.com/pb/pb_appe.html (1 of 7) [8/21/2000 10:50:36 PM]

http://www.jes.com/gifs/adsnstuf/pb2bl.jpg

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Appendix E

>HELLO (D) <cr>
*E1

*

Fatal Error Conditions.

In the involuntary form, a Pick/BASIC program enters the debugger whenever a"fatal" error condition is
encountered, like when an attempt is made to read from afile that has not previously been opened. When
afatal condition is encountered, the program "breaks' and displays something to this effect:

Innn

[Bnnn] text.of .fatal .error.message

*

The"1" in Innn indicates that an "interrupt” has occurred in the program at line nnn, the corresponding
source program line. The "Bnnn" isthe BASIC error message item-id, as retrieved from the ERRM SG
file. The text next to the message attempts to explain the reason why the program crashed and burned.

Nonfatal Error Conditions.

A "non-fatal" error condition is one in which a program error of some sort has been detected, but is not
considered serious enough to warrant terminating the program. The classic case of such a condition isthe
Infamous message:

[B***] VARI ABLE HAS NOT BEEN ASSI GNED A VALUE! ZERO USED.

Although the error does not stop the program, it still should be corrected. Sometimesit is difficult to
"catch” the message being displayed, like when it flashes past just before a screen clearing operation.

Another option is provided to force all error conditions, whether normally considered fatal or not, to
enter the debugger. Thisisthe "E" option, and hereis how it is used:

>RUN MY. PROGRAMS TEST. PROG (E) <cr >

(program starts running....)
(Bang! It breaks!)
[B***] VARIABLE HAS NOT BEEN ASSIGNED A VALUE! ZERO USED.

USING THE DEBUG STATEMENT

In the tedious debugging phase of writing programs, it might be necessary to insert one or more DEBUG
statements within the program at potential trouble spots. When the DEBUG statement is executed, the
program immediately enters the debugger, where variables may be interrogated and logic can be traced.
Naturally, once the problems have been detected and corrected, then the DEBUG statements should be
removed from the version that will go into production.

http://www.jes.com/pb/pb_appe.html (2 of 7) [8/21/2000 10:50:36 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Appendix E

Prompt Character

The prompt character, an asterisk (*), appearsin the leftmost column of the terminal display screen,
indicating that the debugger is ready to accept any legal command.

Term Conventions

The following two abbreviations are used in command templates for the Pick/BA SIC debugger:

op Abbreviation for operator. Used in setting "breakpoints' with the "B" command. (See the following
section on operators.)

var Abbreviation for variable name. The actual name of the variable, as defined in the program source
code.

Operators

The operators listed below perform logical comparison functions.

= Equal to

> Greater than

< Lessthan

>= Greater than or equal to
<= Lessthan or equal to

Not equal to

Referencing, Displaying and Changing Variables

While in the debugger, any individual variable may be displayed. For example, let's suppose that there
was avariable called AMOUNT.DUE, and you wanted to display its current value. Y ou would enter:

*[AMOUNT. DUE<cr >

Thiswould locate and display its current value, and allow you the option of changing it:
*/ AMOUNT. DUE 12500=_

Note that when the cursor remains to the right of the symbol, anything you enter will replace the
current value of the variable. Issuing a carriage return while on the right side of the equal sign leaves the
current value intact.

Referencing Dimensioned Arrays

If adimensioned array variable is requested without also providing a subscript, then all elementsin the
array are individually displayed and the current value of any element may be changed. Pressing Return
will "step" down to the next element until the last element is reached or the break key is pressed. For

http://www.jes.com/pb/pb_appe.html (3 of 7) [8/21/2000 10:50:36 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Appendix E
example, suppose there were a dimensioned array named CUSTOMER.ITEM:

*/ CUSTOMER. | TEM&cr >
* CUSTOMVER | TEM |) PROPELLER HEAD ENTERPRI SES=<cr >
* CUSTOMVER | TEM2) 1400 W 147TH ST=<cr >

* CUSTOMER. | TEM 3) CHI CAGO=<cr >

* CUSTOMER. | TEM 4) | L=<cr >

* CUSTOMER. | TEM(5) 60609=<br eak>

*

Individual subscriptsin dimensioned arrays may also be examined and optionally changed. For example,
the instruction:

* [CUSTOMER. | TEM 1) <cr >

might display:
*/ CUSTOMER. | TEM |) PROPELLER HEAD ENTERPRI SES=<cr >

Once again, the current value may be replaced.

In the rare event of needing to reference atwo-dimensional array, the syntax calls for both coordinates,
asin the following example:

* [TAX. TABLE. | TEM 3, 2)

Listing All Program Variables

A complete list of every variable defined in the program can be obtained with the command:
o Asons

Note, however, that when all variables are being displayed, you are not given the chance to change any
of them. Again, they must be requested individually to be changed.

Zone Output Specification

The following command sets left and right margins for output zone limits of debugger display:
*[{leftmargin, rightmargin}}]

The [command followed immediately by a <or> removes zone limits.

Pick/BASIC Debugger Commands

57

*$

Displays current program name, execution line number, and object code verification status.
*Bvar operator variable

http://www.jes.com/pb/pb_appe.html (4 of 7) [8/21/2000 10:50:36 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Appendix E

*Bvar operator "literal™

The B command sets program breakpoints contingent either on a match between the contents of specified
variables, or on a specified variable matching aliteral. For example:

* BREPORT. DATE=TODAY

* BCHECK. AMOUNT>0
* BEMPLOYEE. DEPARTMENT=" ACCOUNTI NG'

In the first example, the program breaks and enters the debugger when the current value of
REPORT.DATE matches the current value of TODAY; in the second, the program breaks when the
value of CHECK.AMOUNT becomes greater than O; and in the third, the break occurs when
EMPLOY EE.DEPARTMENT contains the string "ACCOUNTING". Note that strings containing
alphabetic or punctuation characters must be enclosed in quotes, but numeric "constants" do not.

*B$oper at or | i nenunber

The"$" symbol is a special means of referring to a source line number. This provides the ability to enter
the debugger, for example, when a certain program line is executed. For example:

B$=45

Thisinstructs the debugger to be entered before executing line 45 of the program.

B$>40

This causes the debugger to be activated before executing line 40 and then to reactivate itself before each
subsequent program line is executed, until this breakpoint condition is removed.

As breakpoint conditions are entered into the breakpoint table, aplus (+) character is displayed for each
breakpoint successfully entered, until the table is full. The maximum number of breakpointsisfour.

Note that the spaces between the arguments in the above syntax illustrations are ssmply there for
readability--they are not allowed when actually composing breakpoints, as shown in the following
examples.

*B$=45 (OK)
*BCHECK. SUM # CRC. TOTAL (wong)
*D

Displays the contents of the Break and Trace tables.
*DE

* DEBUG

Transfers control to the system debugger; see your system manuals for available commands.
*E{ nunber | i nes}

Specifies the number of instructions to execute prior to returning to debugger command level. Followed
immediately by a <cr>, The E command disables previous iteration counter setting.

*END

Terminates program execution and returns control to TCL.

http://www.jes.com/pb/pb_appe.html (5 of 7) [8/21/2000 10:50:36 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Appendix E

*J | i nenunber }

"Go to" function. Transfers control to a specific program (source) line number. Followed immediately by
acarriage return, the G command resumes program execution from the current program line number.
Note that if the program was compiled without EOL (End-Of-Line) characters, then the only number
allowable for the "Go to" isone (1).

* K {breakpoi nt - nunber}
Kills a breakpoint previously set with the B command, and removes the entry from the breakpoint table,
Followed immediately by a< cr >, the K command removes al breakpoint entries from the table.

*L {startingline-nunberlines}
*L{nunberl i nes}
AR,

*L

Displays source cede program lines, beginning from specified starting line number, or from current
position if no starting line number is specified. The L command followed by an asterisk displays the
entire program. Followed immediately by a <cr>, the L command displays the current program source
cedeline. (See also the Z command.)

*LP
Toggles the line printer bit, either directing debugger output to the terminal screen or the spooler.
*N{ nunberti nes}

Instructs the debugger to ignore breakpoints for the next number of times they are encountered. The N
command followed immediately by a < cr > resets the bypass, and breakpoints are processed at each
occurrence.

* OFF

Terminates program execution, logs process off system, and returns control to the logon message.
*P

Toggles the LISTFLG function, either enabling or disabling output display.
#PC

Closes the currently open spooler file entry, releasing control to spooler.
*R

Removes the top return stack address of local subroutine from stack, causing the program to return from
current subroutine as though a RETURN statement had been encountered.

*S

Displays the contents of the subroutine stack.
*T {var}

Sets a trace table entry, instructing the debugger to display the specified data element, along with the

http://www.jes.com/pb/pb_appe.html (6 of 7) [8/21/2000 10:50:36 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Appendix E

contents of the break and trace tables, on each break. A plus (+) character is displayed for each trace
table entry successfully entered into the table, up to a maximum of six entries. Entering the T command
without parameters toggles the trace function on or off.

*U {trace table entry}

Removes trace table entries previously specified with the T command. A minus (-) character is displayed
for each trace table entry successfully removed from the table. Followed immediately by a <cr>, the U
command clears al trace table entries previoudly specified with the T command.

*V

Verifies Pick/BASIC object cede. No longer serves any useful function.

*Z {DICT} filenane itemane
*/<cr>

FI LE/ PROG

NAME?f i | enane it emane

Specifies that the debugger should use the symbol table defined for the program referenced in itemname,
in the specified filename. Only required when the source cede for the program isin adifferent file than
the object cede. Entered without parameters, the Z command prompts for the filename and itemname.

#previous chapter & Top

Copyright © 1985-2000 Jonathan E. Sisk. It is against the law to reproduce or distribute thiswork in any
manner or medium without written permission of the author, c/o JES, Inc., P.O. Box 19274, Irvine, CA
92623, phone (949) 553-8200, fax (949) 553-9779, email: [sisk@jes.com.

http://www.jes.com/pb/pb_appe.html (7 of 7) [8/21/2000 10:50:36 PM]

mailto:jsisk@jes.com
http://www.jes.com/
mailto:jsisk@jes.com

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Glossary

Jonathan E. Sisk's
Pick/BASIC: A Programmer's
Guide

WWW Edition January, 2000

<cr> -- The standard abbreviation for carriage return. On some keyboards, this key is called "Enter" or
"Newline" or "Line Feed." Thisisthe key that you typically pressto let the system know that your
command or input isto be considered finished, and is ready for processing.

ABS frames-- A frame which contains the executabl e object code of the Pick Operating System. The
name is derived from ABSolute location, since everything within the frame is addressable by an absolute
location, derived by taking the frame number (fid) and displacement (offset) into the frame.

ACCESS -- The dataretrieval language used to produce reports with English-like sentences; also called
RECALL, ENGLISH, INFO/ACCESS, etc. Not covered in this book.

accounts -- Accounts are collections of logically related files, much like departments within a company.
Each department has its own set of file cabinets. The name of the account is aso the logon, that is, it is
entered at the "LOGON PLEASE" message to gain access to the system. In the account's MD also are
verbs, miscellaneous connectives and modifiers, and PROCs.

amc.expression -- Abbreviation for Attribute Mark Count expression. An expression or constant that
derives a number which indicates the position of an attribute within an item.

array -- An array isafancy name for an item, as seen in PICK/BASIC. The Pick System allows its
"three-dimensional™ record structure: items are composed of attributes, which are in turn composed of
values, and they in turn may be composed of subvalues. A dynamic array, accomplished in a program
with a READ statement, is a means of dealing with an item that may have a variable number of array
elements. A dimensioned array is characterized by having a predetermined number of elements, declared
with the DIM statement.

array.variable -- A variable used to contain an item, whether a dynamic or dimensioned array. Loaded
through aREAD or MATREAD statement.

attribute -- An attribute is usually an object or a collection of logically related objects, like an address or
list of addresses, within an item.

http://www.jes.com/pb/glossary.html (1 of 5) [8/21/2000 10:50:38 PM]

http://www.jes.com/gifs/adsnstuf/pb2bl.jpg

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Glossary

attribute mark -- The reserved character from the ASCII character set used to indicate the end of an
attribute and the beginning of another. Normally, these characters are "transparent,” meaning that, for the
most part, you will never see them. If you went looking for them, however, here's what you would find:
In its conventional display form, it looks like an "up- arrow" () in hexadecimal, its representation is
FE, but it is output as 5E; and in decimal, its representation is 254.

To produce an attribute mark from the keyboard requires "control up-arrow," i.e.,
<control>". Sometimes the up-arrow key islocated as an uppercase character (usually when
the symbol appears above the 6 key on the numeric keys above the alphabetic keys). In
this case, it takes a "control-shift-" to produce the attribute mark. Fortunately, you won't
have to do this very often.

attribute mark count -- The relative number of an attribute within an item.
basefid -- Thisisthe "first" frame of the block of contiguous frames set aside for afile.

bit -- Actually a contraction for binary digit. The logical representation of either a1 or 0. When eight of
these gang together, they are called a byte.

byte -- A collection of eight bits, which together represent one of the 256 possible charactersin the
ASCII character set.

conversion -- A code native to the ACCESS and PICK/BASIC languages which perform a"reversible
mapping," according to the new definition of SMA. More practically, these are the special codes which
alter or change the data from one format to another. For example, a money amount may be "externally

converted" so that it displays the dollar sign, commas, and decimal point.

conversion.expression -- An expression which derives avalid conversion code. Used exclusively in the
ICONV and OCONV intrinsic functions.

correlative -- According to SMA, not areversible mapping. The basic difference between conversions
and correlatives has classicly been where they were placed in attribute defining items. The general
consensusisthat if it hasto be placed on line 7, then it isa conversion. If it only workson line 8, then it
must be a correlative. Some of these codes work on both attributes. We are |eft to decide what to call
these. "Convelatives," perhaps? The bottom line is that, currently, all of the codes, with the exception of
the"A" (algebraic) and "F" (function) correlatives, may be used in the PICK/BASIC ICONV and
OCONV functions, although most of them are not needed since there are specific instructionsin
PICK/BASIC to emulate their features.

CRT -- Abbreviation for cathode ray tube. Better known as a "tube."

delimiter, reserved -- Thisisthe set of four specia characters used to accomodate the variable-length
record structure of the Pick System. They are: attribute mark (*), value mark (]), subvalue mark (\), and
the segment mark (). Note that all four of these characters are control characters. Generally, when these
characters need to be used in programs, they are obtained through the CHAR function, referring to each
character by its decimal equivalent.

delimiter, non-reserved -- A delimiter is ssimply a predefined character used to separate other characters
In astring. For example, each word in this sentence is "delimited” by a space. Any character may be
treated as a delimiter.

http://www.jes.com/pb/glossary.html (2 of 5) [8/21/2000 10:50:38 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Glossary

dictionary -- The level of the file system used to contain the attribute defining items for use in ACCESS
sentences, as well as to define the actual location of the data section for afile viaits data definition item,
commonly called its D- pointer. Dictionaries are hardly ever used by PICK/BASIC programs, although
they are capable of being used through the EXECUTE statement.

Editor -- The process through which programs are entered into the computer. It allows items to be
created, changed and deleted from any file.

ERRM SG -- Thisisthe file which contains the text of the error messages of the operating system. The
messages from this file may be used through the STOP and ABORT statements.

fid -- Contraction for frame-id, the logical address of aframe. The number of frames on a Pick computer
isafunction of how much disk is present. Each frame is given a unigue number between O (zero) and
maxfid, the "last" addressable frame.

files -- Files are collections of logically related items, much like afile cabinet contains file folders made
up of similar types of information. For example, in one file cabinet you may find file folders containing
information about your customers, while in another cabinet may be the folders for your suppliers. In the
Pick System, the number of items that can be put into afileis limited by the capacity of the disk. We will
put all of the PICK/BASIC programs, which are each considered "items," into afile called BP.

filevariable -- The name by which afileisreferenced during the OPEN statement and subsequently
through READ, MATREAD, READV, WRITE, MATWRITE, and WRITEV statements.

frame -- The basic division of the hard disk. The entire disk is divided into individual pages or frames of
a predetermined length. In the classic Pick System, frames were 512 bytes, with the first 12 bytes of each
frame being reserved for the "linkage" fields. Frame size now varies on Pick implementations.

frame-id -- Seefid.

functions -- Instructions which invoke machine-level microprograms. They usually perform relatively
complicated "functions,”, like removing all extraneous blanks from a string or converting dates to
alternate formats, serving part of alarger statement. See Chapter 1.

GFE -- Abbreviation for Group Format Error, the absolute nemesis of all Pick machines. The presence
of one or more GFE's indicate that the data structure has become corrupted for one of about 20 different
possible reasons and that data loss may be imminent. As any true-blue programmer will testify, GFE's are
almost always caused by hardware and/or power problems. Generally, the appearance of GFE's indicates
that it'stime to head for your favorite bar while the local team of witch doctors exorcises your machine.
Contrary to popular belief, however, you do not have to do afull restore when these appear. Most of
them can be corrected by relatively painless surgical procedures.

group -- Typically, thisis where GFE's hang out.

hashing -- The method by which items are placed into, and retrieved from, afile. Each item-id is put
through a hashing algorithm that mathematically determines which group in thefile to look for, or put,
an item. An alternate to the industry-standard | SAM (Incredibly Slow Access Method).

id.expression -- An expression which represents an item-id, found in instructions which read, write, or
delete items from files.

http://www.jes.com/pb/glossary.html (3 of 5) [8/21/2000 10:50:38 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Glossary

item -- A collection of logically related attributes.
item-id -- The unique item-identifier or "key" of anitem in afile. See Chapter 1.

megabyte -- Contraction of "mega," meaning million, and "byte," from the Latin bitus, which means the
feeling it places on your checkbook. Typically used by salespeople to indicate the amount of disk or main
memory storage they intend to sell you.

modulo -- The number that indicates the number of groupsin afile. Typically, talking about choosing
modulo is a good way to start a heated argument in aroom full of technical types.

PIB -- Abbreviation for Primary Input Buffer.
PROC -- The procedural language.

Q-pointer -- A "fake" file pointer placed into the Master Dictionary (MD), typically with the Editor.
Q-pointers allow accessto files that "physically" reside elsewhere, like in another account, but may also
be used to refer to files within any account.

segment mark -- The reserved character from the ASCII character set used to indicate the end of an item
or group. Normally, these characters are "transparent,” meaning that for the most part you will never see
them. If you went looking for them, however, here's what you would find: In its conventional display
format, it looks like an underline (_); in hexadecimal, its representation is FF; and in decimal, its
representation is 255.

To produce a segment mark from the keyboard requires a" control underline”, i.e.,
<control>_. Sometimes the underline key is located as an uppercase character (like when the
" " symbol appears above the "-" key on the numeric keys above the alphabetic keys). In

this case, it takes a"control-shift- " to produce the segment mark.

separ ation -- The number, which goes hand-in-hand with modulo, to indicate the number of framesin
each group. On all Pick systems, this defaults to one. Some schools of thought contend that it should be
greater than one in some circumstances, but this again is like discussing religion or politics. Pick Systems
(the company) has been trying to remove separation atogether for quite a while; on many
Implementations, if you change the separation to something other than one, with the intent of resizing the
file, the system thinks that you were just kidding and changes it back to one for you.

statements -- A statement isalist of words which comprise the detailed instructions on which the
computer makes its decisions and performs its duties. It will normally consist of constants, variables,
expressions, and/or the special commands of the PICK/BASIC language. PICK/BASIC allows multiple
statements to be put on one physical line (attribute) if each statement is separated by a semicolon (;). See
Chapter 1.

string.expression -- An expression which derives a string of characters and/or numbers.

subvalue -- Anindividual element of avaue. Most schools of thought prefer to pretend that these don't
even exist, since that's how the ACCESS retrieval language reacts to them.

subvalue mark -- The reserved character from the ASCI| character set used to indicate the end of one
subvalue and the beginning of another. Normally, these characters are "transparent,” meaning that for the

http://www.jes.com/pb/glossary.html (4 of 5) [8/21/2000 10:50:38 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Glossary

most part you will never see them. If, however, you went looking for them, here's what you would find:
Inits ASCII appearance, it looks like a backslash (\); in hexadecimal, its representation is FC; and in
decimal, itsrepresentation is 252.

To produce a subvalue mark from the keyboard requires a " control backslash", i.e.,
<control>\. Sometimes the backslash key islocated as an uppercase character. In this case, it
takes a "control-shift-\" to produce the subvalue mark.

SY SPROG -- By far, the most powerful, and dangerous account on any Pick system. Thisis the account
from which most maintenance takes place, like the creation and deletion of accounts, backups and
occasionally restores, and dealing with the spooler. The SY SPROG account is the only account which
contains the full complement of verbs; it thus should be restricted to use by only those with afull
appreciation of the unlimited damage it can wreak upon the rest of the system.

SYSTEM -- The"top" level of the Pick file hierarchy. Thisfile contains "pointers’ to all accounts and
system- levd files.

TCL -- Abbreviation for Terminal Control Language, the point from which all operations begin.
Indicated with the ">" prompt character.

value -- Anindividual element of an attribute. An attribute which contains more than one valueis
typically referred to as a"multivalued" attribute.

value mark -- The reserved character from the ASCI| character set used to indicate the end of an
attribute and the beginning of another. Normally, these characters are "transparent,” meaning that for the
most part you will never see them. If you went looking for them, however, here's what you would find: In
its ASCII appearance, it looks like aright square bracket; in hexadecimal, its representation is FD; and in
decimal, itsrepresentation is 253.

To produce avalue mark from the keyboard requires a "control right bracket," i.e.,
"<control>]". Sometimes the right bracket key islocated as an uppercase character. In this
case, it takes a "control-shift-]" to produce the value mark.

variable -- A variableisa symbol into which data can be stored. Asits name implies, the value, or
contents, of avariable can change during program execution. In the earliest form of BASIC, variable
names were typically single alphabetic characters for variables containing numbers and al phabetic
characters preceded by a"$" for "string" variables. A "string" variable is a variable containing alphabetic
and/or punctuation characters. In PICK/BASIC, variable names may be of any length and therefore
should be descriptively named. Variable names must begin with an alphabetic character and may include
a phabetic characters, periods and dollar signs.

Copyright © 1985-1999 Jonathan E. Sisk. It is against the law to reproduce or distribute this work in any
manner or medium without written permission of the author, c/o JES, Inc., P.O. Box 19274, Irvine, CA
92623, phone (949) 553-8200, fax (949) 553-9779, email: |sisk@jes.com.

A Top

http://www.jes.com/pb/glossary.html (5 of 5) [8/21/2000 10:50:38 PM]

mailto:jsisk@jes.com
http://www.jes.com/
mailto:jsisk@jes.com

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": World Wide Web Edition

Jonathan E. Sisk's
Pick/BASIC: A Programmer's
Guide

WWW Edition January, 2000

Answers to Review Quizzes

Review Quiz 1

1) A symbol that contains data whose value may be changed.

2) ED filename item-id
or
EDIT filename item-id

3) BASIC filename item-id (to compile the program)
RUN filename item-id

or

BASIC filename item-id

CATALOG filename item-id

item-id (at the TCL prompt)

4) Non-executabl e statements which allow text comments to be inserted into the source code. Why? to
explain variable names and usage, tricky logic, etc.

5 "$" or"."
6) STOP, if executed before physical end of program. END, if no more code.

7) An expression which derives atrue or false. Trueis represented as numeric non-zero and false is zero
or null.

8) None. It's a hardware problem.

http://www.jes.com/pb/pb_ans.html (1 of 8) [8/21/2000 10:50:42 PM]

http://www.jes.com/gifs/adsnstuf/pb2bl.jpg

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": World Wide Web Edition

Review Quiz 2

1) The PROMPT statement.
2) PROMPT ">"

3) An optional number at the beginning of a source line to which execution may be transferred with the
GOTO or GOSUB statement.

4) GOTO statement.label (also GO TO statement.label) or GOSUB statement.|abel
5) MATCHES or MATCH

6) (a) "2N'-'4N'-'2N"

(b) "1A4N'/'3N"

(C) 1AOA''1A0A"

(d) "2N'IN'/2N" or "INON'/ INON'/"2NON"
(e) "INON".'2N"

7) As aterminator for amultiline THEN or EL SE clause, or to terminate program execution (when the
END compiler directive appears as the last statement in a program).

8) When they occur between quotes, and between keywords and variables in a statement.
9) In remarks, to provide visual spacing for making the programs more readable.

10) NUMBER.OF.EYES = COUNT("MISSISSIPPI™,"1")
or
PRINT COUNT("MISSISSIPPI","I™)

Review Quiz 3

1) Precedence determines the answer in expressions which do not contain parentheses.

2) The REM statement is aremark, or comment. The REM function divides one number by a second
number, and returns the remainder of the operation. The REM function is aways followed by
parentheses, like al other functions.

3) Generates arandom number.

4) (a) Theline should read:

IF ANSWER ="Y" THEN PRINT "YES"' ELSE PRINT "NO"
The END statement is not allowed in this single-line |F statement.
(b) The fragment should read:

http://www.jes.com/pb/pb_ans.html (2 of 8) [8/21/2000 10:50:42 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": World Wide Web Edition

| F ANSVER > 0 THEN
PRI NT " ANSWER > 0"
END ELSE
PRI NT " ANSWER < 0"
END

The END statement is required on any multiple-line IF statement.
(c) The code should read:

| F ANSWER = "N' THEN
PRI NT "ENTER ALTERNATE VALUE "
| NPUT ALTERNATE. VALUE
| F ALTERNATE. VALUE = "" OR ALTERNATE. VALUE <= 0 THEN
PRI NT "MJST BE ANSWERED OR POSI Tl VE! "
END
END

The interior, or nested | F statement must be terminated with an END statement.

Review Quiz 4

1) The EQUATE evaluates at compile time and requires less overhead at run time. The assignment
evaluates at run time and isless efficient.

2) Statement A

3) COUNT determines the number of occurrences of a string within another string. DCOUNT determines
the number of dataitems delimited by a given string.

4) Puts a process to sleep for some period of time. Give yourself an extra point on this one.
5) SLEEP 600

6) SLEEP 17:30

7) Returns the DECIMAL value of any ASCII character.

8) Generates a string of characters.

9) PRINT STR("-",10)
or
PRINT STR(CHAR(45),10)

http://www.jes.com/pb/pb_ans.html (3 of 8) [8/21/2000 10:50:42 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": World Wide Web Edition
Review Quiz 5
1) Internal format is the way the computer views and stores data. External format is the human-readable
form.
2) The ICONV function and the"D" conversion code.
3) To determine the day of the week:
Bl LL. DATE=I CONV(BI LL. DATE, "D")
PRI NT OCONV(BI LL. DATE, " DWA")

or, if you really want some punishment:

PRI NT OCONV(| CONV(BI LL. DATE, "D"), " DWA")
To determine when the bill should be paid:
Bl LL. DATE=I CONV(BI LL. DATE, "D")

DUE. DATE = BI LL. DATE + 30
PRI NT OCONV(DUE. DATE, "D2/ ")

4) PRINT OCONV/(TIME(),"MTHS") or PRINT OCONV(TIME(),"MTH")
5) Generates a string of spaces.

6) The process of formatting output through the mask expression which follows the expression that it is
to affect.

7)
(a) NAME ADDRESS

(b) 123 456
(c) NAMVEL#15ADDRESS

8) variable = TIMEDATE() or PRINT TIMEDATE()

9) When you go to arestaurant and your waiter says, If you need anything else, my name is Jim, and you
wonder what his name isif you don't need anything else.

Review Quiz 6

1) (8) PRINT CHAR(12): or PRINT @(-1):
(b) PRINT @(3,15): "HELLO THERE":
(C) PRINT @(-4):

http://www.jes.com/pb/pb_ans.html (4 of 8) [8/21/2000 10:50:42 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": World Wide Web Edition

2) INPUT variable,6
3) variable =ICONV ("123456.78","MR2")
4) PRINT OCONV (5667788,"MR2,$")

5) The process of linking strings together, meaning that the strings are joined end to end to form a new
string.

Review Quiz 7

1) The"[" and "]" characters are used in the text extraction or substring function. For example:
IF RESPONSE[1,1] ="Y" THEN PRINT "THANK Y OU"
2) Initiates the CASE construct.

3)
CASE condi ti onal . expression
st at enent (s)

4) BREAK OFF and BREAK ON disable and enable the break key, respectively.

5) Disables the output of PRINT statements to the printer. All subsequent PRINT statements direct
output to the screen.

6) PRINTER ON causes all subsequent PRINT statements to be routed to the spooler, and possibly from
there to the printer. Thereis no effect on CRT statements.

7) RUN filename program.name (P
or
cataloged.program.name (P

8) Completes the current spooler entry (print job), and releases it to the spooler.

9) ECHO OFF disables the terminal echo function. All characters from this point on are not displayed on
the screen as they are entered. ECHO ON enables the echo function.

Review Quiz 8

1) Searchesthrough a string of characters delimited by a known delimiter, and returns a group (or field)
of characters. Usually, the delimiter is not one of the reserved system delimiters.

2)
NUMBER. DESTI NATI ONS = DCOUNT(DESTI NATI ONS, ", ")

http://www.jes.com/pb/pb_ans.html (5 of 8) [8/21/2000 10:50:42 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": World Wide Web Edition

LAST. STOP = FI ELD(DESTI NATI ONS, ", ", 5)

3) Searches for a string of characters within another string of characters, and returns the starting character
position of the string, if it isfound.

4) PRINT INDEX(ALPHABET,"S",1)

Review Quiz 9

1) The STEP factor changes the normal value by which the variable in the NEXT variable statement is
incremented. The incremental valueis normally 1.

2)
FOR1 = 1 TO 100 STEP 2
NEXT |

3)
FOR1 = 100 TO 1 STEP -3
NEXT |

Review Quiz 10

1) The OPEN statement locates and establishes a physical addressto afile. It is used before referring to
the file for input or output.

2) These are the special reserved delimiters used to separate attributes, values, and sub-values. They
indicate the end of one location, and the beginning of another.

3)

ARRAY=" BARNEY RUBBLE"

ARRAY<2, 1>=" PO BOX 77"
ARRAY<2, 2>="141 BEDROCK PLACE"
ARRAY<3>=" BEDROCK"

ARRAY<4>=" CA"

http://www.jes.com/pb/pb_ans.html (6 of 8) [8/21/2000 10:50:42 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": World Wide Web Edition

ARRAY<5>="19104"

4)

PRI NT ARRAY<1>

PRI NT ARRAY<2, 1>

PRI NT ARRAY<2, 2>

PRI NT ARRAY<3> : ", " : ARRAY<4> : " " ! ARRAY<5>

5) After thefirst ICONV statement (note that the value is preceded by five attribute marks):
A e Al k5T T4

The second ICONV statement produces:

AN110000MN 15767

6) READ, READU, MATREAD, MATREADU

7)

OPEN "1 NvVO CE-FI LE" TO | NvAO CE. FI LE ELSE
PRI NT "I NVO CE-FI LE I'S NOT A FI LE NAME"
| NPUT RESPONSE
STCOP
END
READ | NVO CE. | TEM FROM | NVO CE. FI LE, " S1000" ELSE
PRI NT "1 NvAO CE S10000 | S NOT ON FI LE"
| NPUT RESPONSE
STOP
END

8) The THEN clause may be followed by a statement, or statements, to execute when the item is found
on file.

9) The EL SE clause may be followed by a statement, or statements, to execute when the item is not
found on file.

Review Quiz 11

http://www.jes.com/pb/pb_ans.html (7 of 8) [8/21/2000 10:50:42 PM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": World Wide Web Edition

Review Quiz 12

OK, so there were no quizzes for these two chapters.

Review Quiz 13

If your program works, and does everything that was asked for, you passed the quiz.

Review Quiz 14

1) The EXECUTE statement allows a PICK/BASIC program to issue any TCL command, and optionally
return the results to the program.

2) The CAPTURING clause indicates where the output from the TCL process will be directed.

3) The HEADING defines the text to appear at the top of each page of output on an ACCESS or
PICK/BASIC report.

4) HEADING "'LC'Aged Trial Balance Report Page 'PLC' as of 'DL™
5) The READNEXT statement retrieves the next item-id from a selected list of item-ids.
6) The PAGE statement issues aform feed between pages of output on a PICK/BASIC report.

Copyright © 1985-2000 Jonathan E. Sisk. It is against the law to reproduce or distribute thiswork in any
manner or medium without written permission of the author, c/o JES, Inc., P.O. Box 19274, Irvine, CA
92623, phone (949) 553-8200, fax (949) 553-9779, email: |Sisk@jes.com.

http://www.jes.com/pb/pb_ans.html (8 of 8) [8/21/2000 10:50:42 PM]

mailto:jsisk@jes.com
http://www.jes.com/
mailto:jsisk@jes.com

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Foreword

G Jonathan E. Sisk's
S Pick/BASIC: A Programmer's
Guide

FOREWORD by Ken Simms,
The Author of the Pick/BASIC
L anguage

The rumor that | wrote Pick/BASIC in order to be able to play Star Trek isnot true.
However, | did play alot of STAR TREK while developing the language. | needed to
test the product. Didn't [?

Since that time, | have seen alot of PICK/BASIC programs. Nearly al of the programs
did what they were supposed to do nearly al of the time. But some programs were not
very easy to understand. Some were so hard to understand that it was cheaper to throw them away and
start over than to change them.

But in all thistime (about 12 years) there have been no books about PICK/BASIC other than the system
manuals. Jon Sisk's new book not only shows how to write PICK/BASIC programs, but it also shows
how to write PICK/BASIC programs that are easy to understand. Jon's years of teaching PICK/BASIC
help to make this book an excellent learning tool. | recommend it to anyone who would like to learn
PICK/BASIC. | aso recommend it to anyone who already knows PICK/BASIC and would like to see
how good programming standards can be applied to the language.

KEN SIMMS
(Original Foreword from First Edition, Circa 1985)

Ken Smms passed away in November, 1988.

We miss you, Ken.

M Next chapter & Top

Copyright © 1985-2002 Jonathan E. Sisk. It is against the law to reproduce or distribute thiswork in any
manner or medium without written permission of the author, ¢/o JES, Inc., P.O. Box 19274, Irvine, CA
92623.

http://www.jes.com/pb/foreword.html [12/18/2001 11:14:37 AM]

http://www.jes.com/gifs/adsnstuf/pb2bl.jpg
http://www.jes.com/

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": January, 2000 WWW Edition

Jonathan E. Sisk's
Pick/BASIC: A Programmer's
Guide

WWW Edition January, 2000

Preface

The popularity of the Pick Operating System has continued to grow over the years. Recent estimates put
theinstalled Pick base at roughly 70,000 systems, ranging in size from desktop systems, like the IBM XT
and AT, al the way up to mainframe-class systems such as the IBM 4300 and 9370, with dozens of
micro and super-micro systemsin between.

For many years, most people who had machines that ran Pick didn't know that it was Pick they were
using. Pick went under "brand" names, like Ultimate and REALITY . Today the system is no longer being
sold in plain brown wrappers.

My experience has been that most of the Pick-based systemsin use today are managed by people who do
not have alot of experience with other operating systems. In many ways thisis an advantage the single
largest one of which isthat they do not have to be "retrained" into the Pick way of doing things.

Most companies do not have a"professiona” in-house staff to do programming and analysis work, and
thus have to do it themselves -- unless, of course, they rely on outside consultants or software vendorsto
perform technosurgery on their software. This book is for those of you who want to learn how to do it
yourselves. It's a'so aimed at those who don't want to do it themselves, but want to be able to talk
intelligently to those who do.

This book was developed from the course materials for my programming sessions in " The Pick System
Educational Series." Naturally, every little nuance about PICK/BASIC can't be covered in one book, but

this book is intended to provide a broad introductory overview about the powerful PICK/BASIC
language.

The method by which this book attempts to explain PICK/BASIC is through step-by-step tutorials. In the
first chapter, the basics of logging onto the system and creating your account are provided, along with a
very cursory overview of the Pick Editor. From there, basic programming principles and terminology are
discussed in Chapter 2. Chapter 3 takes the reader into the exciting world of programmingin
PICK/BASIC by providing a ready-made program which will be entered into the system, compiled, then
run. A detailed explanation of each instruction and principle follows immediately after the source listing.

http://www.jes.com/pb/preface.html (1 of 2) [12/18/2001 11:14:38 AM]

http://www.jes.com/gifs/adsnstuf/pb2bl.jpg
http://www.jes.com/training.html
http://www.jes.com/training.html

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": January, 2000 WWW Edition

The objective is to cover the instructions used most often in the language, in a practical, objective, and
logical order. The rest of the book follows this tutorial format, with each program building upon
principlesintroduced in preceding examples while introducing new topics along the way.

Asthefirst tutorial on the PICK/BASIC language, this book may serve as the pioneer by which future
similar attempts are measured. Pioneers, especially in the data processing community, are easily
identified: they are the ones with the arrows sticking out of their backs. | hope this book will provide the
reader with a broad enough introduction to be able to understand the principles and mechanics of the
PICK/BASIC language. Maybe it will even provide the courage necessary to start writing code from
scratch. But more important, it is intended to encourage its readers to get out there and discover, ponder,
and even maintain the existing code on their machines.

| welcome all comments and suggestions.

Jonathan E. Sisk

#previous chapter M Next chapter & Top

Copyright © 1985-2000 Jonathan E. Sisk. It is against the law to reproduce or distribute thiswork in any
manner or medium without written permission of the author, c/o JES, Inc., P.O. Box 19274, Irvine, CA
92623.

http://www.jes.com/pb/preface.html (2 of 2) [12/18/2001 11:14:38 AM]

mailto:jsisk@jes.com
http://www.jes.com/

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide"

Jonathan E. Sisk's
Pick/BASIC: A Programmer's
Guide

WWW Edition January, 2000

| ntroduction; The Ground Rules

In writing Pick/BASIC: A Progammer's Guide, certain ground rules had to be established. Without
setting boundaries, the job would never have been completed and no one could have benefited from the
information. The ground rules are listed here so you might understand the working concepts used to
create this textbook.

1. Thisisnot an encyclopediaor dictionary; it isintended to be atextbook. It will provide a genera
understanding of nearly every instruction in the language, and the principles behind putting them
to use.

2. Itisnot asimportant to identify which version of PICK/BASIC does what. The intention isto
thoroughly explain the standard instructions and features. Tying specific capabilities to specific
manufacturersis therefore given low priority.

3. Thistextbook does not replace your existing system documentation. Thereis still aneed for
standard system reference manuals.

4. Manufacturers change their versions of PICK/BASIC, eliminating bugs and adding features,
frequently without acknowledging the existence of any problems. For this reason, every known
bug, change, improvement or modification is not documented.

5. To further expand on point 1, there are actually several very good reasons that not every
instruction is covered. Some instructions, like "INPUT @" and "INPUTTRARP," don't work
consistently. Other instructions, like "RETURN TO statement.label” make programs too hard to
debug. Still others, like "SADD," are specific to one manufacturer, but are listed here for reference
purposes.

About PICK/BASIC

The Pick System comes equipped with avery powerful programming language: PICK/BASIC. It has
some remote similarities to standard Dartmouth BASIC (Beginners All-purpose Symbolic Instruction
Code), but far exceedsit in features and benefits.

The comparison of PICK/BASIC to the "standard" BASIC endsits similarities at the READ, WRITE,

http://www.jes.com/pb/pb_wp0.html (1 of 4) [12/18/2001 11:14:39 AM]

http://www.jes.com/gifs/adsnstuf/pb2bl.jpg

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide"

and PRINT statements. Outside of afew intrinsic functions, PICK/BASIC is significantly enhanced and
different in syntax. For example, statement labelsin PICK/BASIC are optiona. When they are used,
most versions of Pick still require numeric statement labels, while some now allow alphanumeric
statement labels.

The language is very well suited to dealing with strings of characters. Thisis particularly convenient in a
system where everything is stored as a string. A special set of intrinsic functions, like INSERT,
REPLACE, and DELETE, are provided to deal with the Pick "three-dimensional” data (item) structure.
This means that items (records) are composed of attributes (fields), which in turn are optionally
composed of "multi-values" (sub-fields), and finally, "sub-values' (sub-sub-fields?). Through
PICK/BASIC, you tell the computer what you want to do to an item, not how to doit. Thisiswhy itis
beneficial to have a general understanding about the Pick file and item structure before jumping into
updating files.

PICK/BASIC programs are primarily used to capture and validate data before storing it on disk. They
also can be used to format reports and menus, but generally these functions are done in ACCESS and
PROC, respectively.

The many other features of this unique language are covered throughout this text. The bottom lineis, if
you have used "standard" BASIC, you will find PICK/BASIC to be a much more elegant alternative. If
you have not used standard BASIC, congratulations; here's your chance to be exposed to a sophisticated,
flexible, and easy-to-learn programming language.

This book deals with "generic" PICK/BASIC code; that is, the programs in the tutorials are designed to
be used on any implementation of the Pick System, unless otherwise mentioned in the text.

About the Intended Reader

This book assumes that you already are familiar with the Pick Editor (EDIT) and the Pick file structure.
Some of the Editor commands are provided in the tutorials, but there are many features of the Editor
which are not discussed.

A background in programming in any language would be helpful, but it's not absolutely vital in order to
comprehend and make use of this book. For newcomers to programming, it isimportant to read the
section called "If Y ou Are New To Programming." Even if you have programmed before, this section is
suggested reading.

What to Expect

Using a"cookbook" approach, this book takes you through practical working examples of nearly every
command in the PICK/BASIC language. Some instructions, like the trigonometric functions, are not
called upon very frequently where the majority of Pick systems are actually used, such asin accounting
departments. Thus, these and other esoteric instructions are omitted.

After going through all of the program examples and quizzes, you will have the tools necessary to write
straightforward, maintainable programs. More importantly, you will be able to read the programs that
you already have. By read, | mean that you will be able to figure out the syntax of nearly every

http://www.jes.com/pb/pb_wp0.html (2 of 4) [12/18/2001 11:14:39 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide"

instruction in any PICK/BASIC program. Figuring out the logic is another matter altogether. Every
programmer has their own style of writing code. Coupling this with the fact that the Pick Systemis
technically very forgiving to even the sloppiest "spaghetti code," produces lots of different approaches to
problem solving.

Asyou explore existing application programs, you will probably find many cases where improvements
may be made from technigues obtained in this book. Don't hesitate put them in! Often a single change
won't provide an obvious increase in the performance of your computer; cumulatively, however, each
little piece adds up to a big improvement, like the old adage that "the whole is greater than the sum of its
parts." For thisreason, attention is paid to programming standards and conventions, in addition to
technical aspects. Current hardware is so fast that even inefficient programs run at blazing speed. This
compensates for bad code, but nothing compensates for code that can't be supported.

Representation Conventions

Certain typographic conventions are used throughout this book and have the same meaning each time
they are encountered.

Any text in all uppercase characters indicates the text is shown exactly asit is displayed by the computer
or exactly as you must enter it. Most implementations of the Pick System are generally sensitive to the
case of commands, instructions, statements, etc. If they are not entered in the right case, they won't work.

The <cr> symbol is used to represent a carriage return. This is sometimes referred to as the "Enter,"
"Newline," or "Line Feed" key. They all mean the same thing: press the Return key.

If You Are New to Programming

If you have never touched a computer before and expect to learn how to program from scratch using this
book, your task may be more than alittle difficult. This book is an introductory approach to the
PICK/BASIC language. Many principles of programming are covered in the course of the text, but to
keep this book from running about 1500 pages, some topics had to be skipped. For this reason, you may
want to explore your local library or bookstore for books that explain the general concepts of
programming. Another excellent source for thisinformation is your local community college or
university. Don't expect to find university courses on Pick just yet, but we're working on getting it in
there.

If you have areasonable "digital aptitude,”" however, this book may provide everything you need to
understand programming in PICK/BASIC.

Chapter 1 explains some terms that you will need to understand throughout this book. Study them
carefully. The glossary contains a much more complete list of Pick terminology.

#previous chapter M Next chapter & Top

Copyright © 1985-2002 Jonathan E. Sisk. It is against the law to reproduce or distribute this work in any
manner or medium without written permission of the author, c/o JES, Inc., P.O. Box 19274, Irvine, CA

http://www.jes.com/pb/pb_wp0.html (3 of 4) [12/18/2001 11:14:39 AM]

http://www.jes.com/

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide"

92623.

http://www.jes.com/pb/pb_wp0.html (4 of 4) [12/18/2001 11:14:39 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 1

Jonathan E. Sisk's
Pick/BASIC: A Programmer's
Guide

WWW Edition January, 2000

Chapter 1
" Pick Terminology and Concepts

E =
i EP i L e

The Pick System uses termsto define itself that are unique in the data processing world. Most of these terms are
defined the first time they are mentioned, and a glossary of these and other Pick termsis found among the
appendices.

ACCOUNTS AND FILES

Accounts are collections of logically related files, much like departments within a company. Each department has
its own set of file cabinets. The name of the account is entered at the "LOGON PLEASE:" message to gain
access to the system.

Files are collections of logically related items, much as afile cabinet contains file folders made up of similar
types of information. For example, one file cabinet may hold file folders which contain information about your
customers, while another cabinet may hold the folders for your suppliers. In the Pick System, the number of items
that may be put into afileisonly limited by the capacity of the disk.

PICK/BASIC programs, each of which is considered an item, are stored in afile commonly called BP. Note that
BP (short for "Basic Programs') is used as a convention only; as with all files, the filename is free-form.

The Pick System gains much of its elegance from the fact that it has only one file structure available. It is known
as arandom access file structure because records physically reside in the file in random order. The Pick System is
excellent for developing on-line, interactive application systems, since accessing data from filesis very fast and
independent of the size of thefile.

Anitemisacollection of logically related attributes or fields. (Other computer systemstypically call thisa
"record. ") For example, an item in the CUSTOMER-FILE might contain the name and address for a customer.
All the itemsin the same file are typically formatted in a similar manner. For example, the first attribute in each
item might be the customer's name, the second attribute might be the address, and so on.

The method by which Pick manages itemsis unique. Quite simply, any item in the Pick System is a collection, or
string, of characters. Pick uses the ASCII1 coding scheme for representing characters. This character set
represents 256 unique characters. Since the upper- and lowercase al phabet, numbers, punctuation, and control
characters barely use up the first 128 characters, there are plenty of unused characters available for other
purposes. Recognizing this fact, the Pick System uses the last four positions in the ASCII coding scheme,
numbered 252 through 255, as special characters to be used by the file system. (Computers generally begin

http://www.jes.com/pb/pb_wpl.html (1 of 12) [12/18/2001 11:14:42 AM]

http://www.jes.com/gifs/adsnstuf/pb2bl.jpg

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 1
counting at zero, which explains why the last four characters are 252 through 255, rather than 253 through 256.)

Since the Pick System treats each item as a string of characters, there is no concept of "type" of fields. Other
systems store data differently depending on the type of the data. The primary "types' of data on other systems are
numeric (binary, floating-point decimal, Comp-l, Comp-3, packed decimal, etc.) and character fields, used for
storing names and other string-type data.

Item-IDs

Each item must have its own unique identifier. Thisis caled itsid, (pronounced "eye-dee" in most of the world,
and "ahh-deee" in Texas) or item-M. Thisis often referred to by some as the "key," and by others as the "primary
key." Theitem-id may be virtually any combination of alphabetic, numeric and (most) punctuation characters.
Those characters that may not be used are: space () ", and any control character. Choosing the item-id for
itemsisnot atrivial process. How the item-id is structured has a significant effect on how the item-id "hashes" to
afile. A discussion of this selection processis presented in Chapter 13,

The Relationship of Files and Items

It might be helpful to consider the method by which Pick has implemented its file structures, and to see how
itemsfit into this scheme. Each item (‘record’) that is placed into afile must al'so have a unique item-id, or key.
Thisitem-id is then hashed, or internally massaged to calculate the storage location where the item isto be
placed. To retrieve an item, the unique item-id must be provided to the process, which then hashes it once again
to the same location. This requires that the item-id be logical or easily known, because if you don't know the
item-id, you can't get to an individual item. There are facilities provided to access the entire file, or even a
"selected” subset, if the item-id is not known.

It isimportant to emphasize that since there is only one file structure in the Pick System, it is used not only by
programmers, developers, and users, but by the operating system itself. Thisis both very powerful and vastly
different from other operating system environments that provide their users/programmers with multiple file
structures for the use of data and a different set of hidden file structures for use by the operating system or its
various utilities.

In the Pick System, all files and items are accessible. From the datafiles up to the system files, everything is
available to the user/programmer, who can greatly enhance the functionality of the system.

ATTRIBUTES, VALUES, AND SUB-VALUES

An attribute (which some people call a"field' ') isan object or a collection of logically related objects, like an
address or list of addresses, within an item. In the Pick System, these objects are typically referred to as values.

For example, if there were an item called 100" in afile called CUSTOMER-FILE, and you were to display it by
copying it to the terminal, it would appear as shown in Fig. 1-1. From visual inspection, it is apparent that the
item has five attributes. All of the attributes have only one value, with the exception of second, which has two
values, both of which are separated by a special "reserved” character called avalue mark. It isdisplayed as a
right-hand square bracket. Note that each value is similar in nature. That is, they are both addresses, but there
must be a way to separate them. That's where multi-values come into use. There may be as many separate values
as needed in an attribute, provided that each is separated by a value mark. This allows treatment of each value as
one entity.

http://www.jes.com/pb/pb_wpl.html (2 of 12) [12/18/2001 11:14:42 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 1

Values may, in turn, be broken up into multiple sub-values. The special reserved character to separate sub-values
is called, creatively enough, a sub-value mark. It is displayed as a backslash (\). There will be more about values
and sub-valuesin Chapter 13, which discusses array management.

Each line number (along the left side of the screen) corresponds to an attribute. WWhen writing programsin
PICK/BASIC, each attribute must contain alegal statement or expression (i.e., no blank lines).

>COPY CUSTOMER- FI LE 100 (T) <cr>

100 ltemid

00l HAPPY CAMPERS MOTOR LODGE Attribute 1
002 2600 MOOSE STREET] P. O BOX 1777 Attribute 2
003 EAST OVERSHCE Attribute 3
004 WN Attribute 4
005 80808 Attribute 5

Fig. 1-1. Sample display of an item.

WHY A VARIABLE-LENGTH ITEM STRUCTURE?

An attribute, or field, in aPick item is merely a string of characters within an item that also is a string of
characters. Pick distinguishes one attribute from another by attaching one of the special reserved characters
previously mentioned to the end of the attribute. Thisis the character numbered 254 from the ASCII coding
scheme. Not surprisingly, thisis called an attribute mark.

This means that when the Pick System accesses an attribute, it merely "scans' the item one character at atime
until it reaches an attribute mark. It doesn't matter how many characters occur between attribute marks, other than
the fact that most Pick systems impose a maximum size limitation of 32K (about 32,267) characters on any single
item. Consequently, items, attributes, values, and sub-values may be of variable length, which allows items to
expand and contract as changes are made.

Most other computer operating systems utilize a fixed-length field concept which requires that each field within a
record have indicated a specific length, along with a beginning and ending character position, to specify where
thefield isfound or stored in the record. The total of all of these fixed-length fields indicates the record size.

The classic problem with this scheme is the five-digit ZIP code. When the record was originally laid out, five
positions were provided to allow for the storage of a ZIP code. When the ZIP code expanded to nine characters,
all the fixed-length-field victims had areal problem. They had to resize their record structures, rewrite their
programs, and tell their bosses to wait.

This problem doesn't occur in the Pick System. With Pick, you simply change the programs to accept and display
nine positions, change the dictionary items used by ACCESS for reporting, and life goes on.

The concept of using delimiters to separate attributes (fields), values, and sub- values significantly simplifies the
problem of data management. All you tell the Pick System iswhat you want, not how to do it. It then scans
through the item, counting the delimiters along the way, until the requested location is found. Simple.

This scheme leads to a phenomenon commonly referred to as the three-dimensional item structure. Attributes
may contain multiple values, each of which is separated by a value mark. Values, in turn, may contain multiple
sub-values, each of which is separated by a sub-value mark. Figure 1-2 illustrates the logical structure of the Pick
System.

http://www.jes.com/pb/pb_wpl.html (3 of 12) [12/18/2001 11:14:42 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 1

Systens are made up of accounts.
Accounts are made up of files.
Files are nmade up of Itens.
Itens are nade up of attri butes.
Attributes are nmade up of val ues.
Val ues are made up of sub-val ues.

Fig. 1-2, Summary of the Pick data structure.

IF YOU HAVE WORKED ON OTHER SYSTEMS

Most systems which impose the fixed-length field and record structure require individual programsto be stored
in separate source code files, with each 80-character record representing a single line or statement of source code.

Since Pick does not impose this fixed-length mentality, source programsin the Pick System are stored
differently. Typically, asinglefileis created to contain multiple programs of a certain application such as
"AR.BP," to contain "Accounts Recelvable" programs. Each item in the file is a program. Each attribute (or field)
in the (program) item isasingle PICK/BASIC line of source code. Remember that Pick has only onefile
structure, which accommodates variable-length items, attributes, values, and sub-values. The only constraint is
that the total length of the program cannot exceed 32,257 characters, which is too much to place in one program

anyway.

Since each attribute (field) is of variable length, there is no concept of a continuation character used by other
systems when a given line of source code exceeds the space allocated within the 80-character constraint. Also,
there is no concept in the writing of PICK/BASIC source programs (unlike FORTRAN, for example) that the
statements must start in the 7th or 8th column position of the line and end in the 72nd or 73rd column.
PICK/BASIC source statements may begin in any column position.

The concept that multiple source programs (items) are stored in the same source code file affects how you
indicate to the various utilities the program that you want to edit, compile, and run. Thisis covered in Chapter 2,
but basically you have to tell the various utilities that the program isin a certain file and has a certain name (item
id). Thisis no different than the way Pick manipulatesitemsin other files: thereis only one file structure.

Experienced programmers, just beginning to understand and appreciate the Pick file and item structure, soon
realize that this environment easily provides the ability to write PICK/BASIC programs which can write other
PICK/BASIC programs. There are several excellent "code generators’ commercially available to the Pick
System.

By now you are realizing that the Pick operating system provides many powerful features that address many
problems plaguing other computer environments with the fixed- length record structures. The Pick System
provides avery powerful language called PICK/BASIC. It isamost unfortunate that it is called "BASIC,"
because of the association with earlier and simpler BASIC languages. Pick has more high-level loop control
constructs available than the ever-present COBOL language, plus an exceptional environment for tracing and
analyzing program "bugs."

Since Pick provides this unique file structure with variable-length items, many additional functions also are
provided to manipulate these structures of character strings. The concept that Pick retrieves afield without
knowing what the data represents (no data typing) means that the Pick system provides an ideal environment for
creating parameter- driven application systems. This provides the ability to write programs that read data files
which contain the parameters and instructions which instruct the programs how to function. Parameter-driven

http://www.jes.com/pb/pb_wpl.html (4 of 12) [12/18/2001 11:14:42 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 1

systems avoid the necessity to "hard code" the functions of a program into its source code, which then requires
recompilation if changes are needed. Such systems are typically more flexible and generic in application. Thisis
agreat aid for software developers.

Another distinction of the Pick System isthe way it stores time and date values. In the instances where a date
needs to be stored, it may be stored as a string, such as 07/04/1997, or you may utilize a function which converts
the date to an integer representing the number of days that have elapsed since the reference date of 12/31/1967.
This processis known as internal conversion. Dates before 12/31/1967 have a minus sign preceding the integer
number of days. For example, if you were to take the date, 12/31/1967, and convert it with the date conversion
function, the function yields the result O (zero). The string 1/3/1968, converted with the same function, yields the
result 3, and 12/29/1967 yields -2.

The advantages of thisinternal conversion process are many. First, it makesit extremely easy to perform
calculations on dates, since they are stored internally as integer numbers. Second, it optimizes disk storage, given
that datesin "internal format" require less room than their "external-format" equivalents. Third and finally, it
assistsin "sorting" dates, since it is easy to compare two integer numbers to determine which is greater. Extensive
functionality existsin Pick to utilize this format and to present dates in many different external formats. These are
discussed at length in Chapter 7.

The storage of time has asimilar internal conversion scheme. Hours and minutes are internally converted to an
integer number that represents the number of seconds that have elapsed since midnight.

This unusual world of Pick, where items (records) automatically expand and contract and no attempt is made to
"type" the data stored in fields means that an attribute in an item, which previously had been used to contain
customer address information, may be changed quite easily --and without breaking any rules -- to accommodate a
numeric value, such as the person's age.

TERMINOLOGY OF THE PICK/BASIC LANGUAGE

Now let's examine some standard programming concepts as they are implemented in Pick.

Statements

A statement is alist of words which comprise the detailed instructions from which the computer makes its
decisions and performsits duties. It normally consists of constants, variables, expressions, and/or the special
commands of the PICK/BASIC language. The PICK/BASIC language allows multiple statements to be put on
one physical line (attribute) provided that each statement is separated by a semicolon (;). Thefirst line of codein
Fig. 1-3illustrates what happens when this feature is abused.

PRI NT "ENTER NAME" ; |INPUT NAME;, |IF NAME = "" THEN STOP
(first statenent) (second) (third)
COUNTER = 0 ; * SET NUMBER OF | TEMS COUNTER TO ZERO

Fig. 1-3. Poor and acceptable uses of multiple statements on one source line.

Asarule of thumb, however, it is recommended to put only one statement per line. This makes programs more
visually appealing and, consequently, easier to maintain. The one exception to this rule is when a comment, or
remark, isincluded on a source line, as illustrated by the second line.

http://www.jes.com/pb/pb_wpl.html (5 of 12) [12/18/2001 11:14:42 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 1

Constants and Literals

A constant is a value which remains unchanged. Numeric constants do not have to be enclosed in quotes. For
example:

SECONDS. PER. HOUR = 3600

This replaces the current value of the variable SECONDS. PER.HOUR with the value 3600. "3600" is the
constant.

Literal constants are any strings enclosed in single or double quotes, or between backslashes (\). Any number of
characters, up to the maximum item size of 32K, may occur between the quotes or backslashes. For example:

REPORT. TI TLE = " PHYSI CAL | NVENTORY REPCRT"

where"PHY SICAL INVENTORY REPORT" isthe literal constant.
PRI NT. LI NE = ' NAME' " "PAY RATE

where'NAME ', '', and 'PAY RATE' arethelitera constants.

Other acceptable literal constants include:
PROWVPT ""

where the two double quotes represent the "null” string, meaning no value.
AGE = "0"

where "0" isthe literal constant. Purely numeric values do not have to be enclosed in quotes. The equivalent
statement is:

AGE = 0

Since no data typing occursin Pick, these two statements produce the same effect.

Variables

A variableis asymbol that represents and contains a data value. Asits name implies, the value, or contents, of a
variable may change during program execution. Some other systems call these "data names."

In many versions of BASIC, aswell asin languages such as Pascal, Ada, and PL/I, the "type" of avariable must
be declared prior to storing datain it. This means that the computer is told what type of datato expectin a
particular variable whether it will be a number or a combination of both letters and numbers. In other versions of
BASIC, variable names are typically single alphabetic characters for numeric variables, which are used in
arithmetic operations. "String" variable names are usually single alphabetic characters followed by a"$",
character. "String" variables contain al phabetic and/or punctuation characters and, on occasion, numbers.

Sel f explanatory form The "CGuess What" form
AG NG TOTAL = 0 AT = 0

| F EXI T. FLAG THEN STOP | F X THEN STOP
MATREAD CUSTOMER. ARRAY. . . MATREAD CA. ..

Fig. 1-4. Sample variable names.

http://www.jes.com/pb/pb_wpl.html (6 of 12) [12/18/2001 11:14:42 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 1

In PICK/BASIC, no concept of datatype exists. Variable names may be any length and therefore may be
descriptively named. Variable names may include al phabetic characters, periods and dollar signs, but must begin
with an alphabetic character. Figure 1- 4 illustrates samples of variable namesthat are all valid in PICK/BASIC.

Assignment

Variables may be assigned an initial value in a program. For example:
| TEM COUNTER = 0O

This assigns the value of O (zero) to the variable named ITEM.COUNTER. Thisis aso known as the process of
replacement. When a variable name appears on the left side of an equals sign, then the result of whatever appears
on theright side of the equals sign will be placed there. Typically, what appears on the right sideis afunction
which produces some result, or aliteral string enclosed in quotes, or even a number, asin the example.

This phenomenon is extremely important. There are many instances of using assignment throughout a program.
These are examined throughout the tutorials.

When the program assigns the value of O (zero) to the variable ITEM .COUNTER, the variable isinitialized.
Initializing means that the program is making the first reference to a variable. The result of not initializing a
variable before it is referenced results in an error message:

[BL0] VARI ABLE HAS NOT BEEN ASSI GNED A VALUE; ZERO USED!
It's agood ideato systematically assign initial valuesto variables.

The most important aspect of variables with regard to initializing is that they must be declared on the |eft side of
an equals sign before referring to them on the right side of an equals sign. Part A of Fig. 1-5 illustrates the correct
approach to initializing variables, while part B illustrates what happens when a variable is not initialized.
TOTAL.AMOUNT appears at line 14 for the first time in this program, and will generate the runtime error
message cited above.

003 TOTAL. AMOUNT = O

007 PRI NT "ENTER DOLLAR AMOUNT OF CHECK"

008 | NPUT CHECK. AMOUNT

014 TOTAL. AMOUNT = TOTAL. AMOUNT + CHECK. AMOUNT
*

*

014 TOTAL. AMOUNT = TOTAL. AMOUNT + CHECK. AMOUNT

Fig. 1-5. Example of A) properly initializing a variable, and B) failing to initialize.

Functions
Functions are operations on one or more variables, constants, or expressions (see nuclear tokens), which generate

asingle value. They are one of the kinds of elements that may be used in a PICK/BASIC expression. (The other
two are variables and constants). Functions perform relatively complicated operations, like removing all

http://www.jes.com/pb/pb_wpl.html (7 of 12) [12/18/2001 11:14:42 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 1

extraneous blanks from a string or converting dates to alternate formats. Functions ordinarily do not stand alone
in a statement. They are typically assigned to avariable or output with aPRINT statement. Here are afew of the
various functions available in PICK/BASIC:

PRI NT STR("!", 25)
CUSTOMER. | TEM 1) = TRl M RESPONSE)
CURRENT. TI ME = TI ME()

There are some rare occasions, however, where functions may effectively "stand alone." One such case iswhen a
function is passed to an external subroutine. Essentially, the rule is that functions may be used anywhere an
expression may be used.

Functions which are native to alanguage are called intrinsic functions. The intrinsic functions within
PICK/BASIC have one syntactical common denominator. They are always immediately followed by a set of
parentheses. Sometimes, depending on the type of function, there are one or more arguments or expressions
within these parentheses. In afew exceptional cases, there are no expressions within the parentheses. Table 1-1 is
apartia listing of PICK/BASIC intrinsic functions, showing required number of expressions within the
parentheses.

Table 1-1. Partial Listing of Functions Showing Arguments Required.

Functions which require no expressions.

(Note: According to one leading Pick expert, the TIME(), DATE(), and TIMEDATE() functions would be more
accurately called "global system variables." They just happen to have a syntax that makes them appear
confusingly similar to functions.)

CcoL1(), COL2(), TIME(), DATE(), TI MEDATE()

Functions which require one expression:

RND, I NT, NUM ASC |

Functions which require two expressions:

COUNT, STR, | CONV, OCONV

Functions which require three expressions:

FI ELD, | NDEX,

Functions which require four expressions:

EXTRACT, DELETE

Functions which require five expressions:

| NSERT, REPLACE

http://www.jes.com/pb/pb_wpl.html (8 of 12) [12/18/2001 11:14:42 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 1

Operators

Operators are characters, and sometimes words, which perform logical, arithmetic, relational, or string-modifying
operations. Operatorsinclude: + - / * <> < => = #: and afew others. Figure 1-6 illustrates some of the operators
availablein PICK/BASIC.

Operators are classified into three categories:

Arithmetic operators:
« + (addition)
o - (subtraction)
o /(division)
o * (multiplication)
« " (exponentiation)

Logical operators:
« =(equa to)
o > (greater than)
o < (lessthan)
« >=(greater than or equal to)
o <= (lessthan or equal to)
« # (not equal to) which may also be represented by (<> or ><)

String operators.
« : (concatenation, or "linking" strings together)
« the MATCHES relational operator, which detects "patterns' of characters.

In thefirst line of Fig. 1-6, ">" isalogica operator which means "greater than,” and "+" is an arithmetic operator
for addition. In the second line, "MATCHES" isarelational operator which checks patterns of characters, and ":"
is a string-modifying operator which means concatenate. Concatenate is another way of saying "link together."

Expressions and Arguments

An expression isavalid series of constants, variables, and functions, connected by operators. These are also
frequently referred to as arguments. The simplest expression is a single constant, variable or intrinsic function.
For example:

TOTAL = TOTAL + NEXT. AMOUNT

Thisis an arithmetic expression, one which adds the two (presumably assigned) variables together and stores the
result in avariable called TOTAL.

Expressions produce aresult, like a string of characters or a number. The result they produce determines the type
of expression. It isimportant to distinguish types of expressionsin attempting to explain the capabilities of
PICK/BASIC.

Some functions, for example, test for a"true" or "false” condition, which could be classified in this case as a
conditional expression. Asyou proceed through the tutorials, you will see avariety of expressions, such as

http://www.jes.com/pb/pb_wpl.html (9 of 12) [12/18/2001 11:14:42 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 1

"string” expressions and "numeric" expressions. Each new type of expression is explained as it is encountered.
For example:

ELI G BLE. FOR. RETI REMENT = (AGE >= 65}

Thisisaknown as arelational, logical or Boolean expression. Boolean expressions use the operators >, <, >=,
<=, <>, ><, and #. Any such expression evaluates to a numeric nonzero value (normally 1) if true, and a0 (zero
or null) if false. This statement assigns the value 1 (one) to the variable ELIGIBLE.FOR.RETIREMENT if the
variable AGE is greater than or equal to 65; otherwise, it isassigned a0 (zero) if not true.

| F CHECK. AMOUNT > 0 THEN CHECK. TOTAL = CHECK. TOTAL + CHECK. AMOUNT
| F PART. NUMBER MATCHES "1A4AN' THEN TI TLE = TITLE : " " : RESPONSE

Fig. 1-6. Examples of using operators.

The parentheses not only clarify, but aso determine the meaning of the statement. By the way, if you don't put
the parentheses around the expression, then it will not work on some versions of Pick.

Logical or Boolean expressions are used within conditional expressions like the IF- THEN and LOOP-UNTIL
constructs. They also have the property of being able to stand alone in an assignment statement.

This process of combining expressions continues in an ever-expanding combination of syntactical permutations
when parentheses and the logical operators OR and AND are included. Figure 1-7 illustrates the use of
parentheses and logical operators.

Functions and Nuclear Tokens

In theinitial definition of functions it was mentioned that functions always are followed immediately by a set of
parentheses, often containing one or more expressions. This is where the concept of "nuclear” or "atomic" tokens
needs to be discussed. Effectively, anuclear token is the smallest part of an expression. Functions may also
contain other expressions, which in turn may contain other functions. Thisis known as an infix notional
language. An example of thisis the statement:

PRI NT ABS(INT(X * Y))

In evaluating expressions, the computer starts from the innermost set of parentheses and works outward. This
examplehas"X * Y" at itscore. "X" and "Y" themselves are nuclear tokens, because they are variables which
already contain aresult by an assignment or a calculation. When X ismultiplied by Y, the result itself becomes
the nuclear token for the INT function. The INT function retrieves the integer portion (the numbers to the left of
the decimal point) of the number, which becomes the nuclear token for the ABS function, which retrieves the
absolute value of a numeric expression. The absolute value is always the positive value of anumeric variable;
hence, the ABS function strips off the leading minus sign if the result is a negative number.

ELI G BLE. FOR RETI REMENT = (AGE >= 65)

| F ELI G BLE. FOR RETI REMENT AND (YEARS. WORKED > 1 AND YEARS. WORKED <= 10 THEN
RETI REMENT. G FT = "TI MEX WATCH"

END

| F ELI G BLE. FOR. RETI REMENT AND (YEARS. WORKED > 10) THEN
RETI REMENT. A FT = "ROLEX WATCH"

END

http://www.jes.com/pb/pb_wpl.html (10 of 12) [12/18/2001 11:14:42 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 1
Fig. 1-7. Using parentheses and logical operators.

MAINTAINING STANDARDS AND CONVENTIONS

Once you know how to program in one language, you discover that most of the same principles apply in amost
all languages. programs are used to capture, manipulate, store and retrieve data on the computer. In current
technology, datais stored on "hard" or "fixed" disks. In afew years, hard disks may be obsolete, but the
principles of dealing with new mediawill remain the same. There will still be a need to have programs to
organize and administer data management.

In any programming language as flexible as PICK/BASIC, it isimportant to consider adopting "standards.” These
are "standard" methods of doing things. In programming textbooks and training classes, discussion of "standards"
often isleft until the end, after habits are already started. Introducing some of the concepts early on allows you to
take advantage of them from the start.

Many programming shops have lists of "programming standards.” These are the guidelines which programmers
follow in order to produce programs that everyone can understand and maintain. This text suggests many
standards, such as the variable naming conventions about to be discussed. Y ou may choose to implement some
and/or use some of your own.

Most versions of Pick are implemented using the ASCII coding scheme? Any variable may contain a number or a
character string. Since there are no "typed" variablesin the Pick System, it is suggested that you use some
variable naming conventions. For example, all variables that act as accumulators could have. TOTAL for the
suffix. The next few sectionsillustrate some of the conventions that are used throughout this text.

File Variables. A file variableis used to refer to aDATA or DICT fileand is always declared in an OPEN
statement. The suggested convention is that the variable name of the file is aways followed by the suffix
"FILE":

fil ename. FI LE

For example:

OPEN " CUSTOVER- FI LE" TO CUSTOVER. FI LE. . .

Item-I1D Variables. Anitem-id variable is avariable used to contain an item-id (what many people call a"key'").
It's a good ideato always follow the name of the variable with the literal, ".ID":

variable. 1D

For example:

| NPUT CUSTOMER. | D

Array Variables. An array variable is the resting place for an item read in through a READ or MATREAD
statement. The suggested convention is that the name of the array is always followed by the suffix, ".ITEM":
arraynane. | TEM or arraynanme. ARRAY

For example:
MATREAD CUSTOMER. | TEM FROM CUSTOMER. FI LE, CUSTOMER. | D. . .

Flag Variables. A flag variable typically contains one of two possible conditions: O (zero) or (numeric) non-zero
(normally 1). These end with the suffix, ".FLG":

vari abl e. FLG

http://www.jes.com/pb/pb_wpl.html (11 of 12) [12/18/2001 11:14:42 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 1

Note that you may use any conventions that you like to name your variables. It is recommended that you do use
some naming conventions, however, because many programmers have found that naming conventions make
programs less difficult to create and/or modify.

SUMMARY

Y ou have just completed the "crash course" on programming concepts. In it, you learned important principles and
terms like variables, expressions, and operators. These principles, with few exceptions, are generalized and apply
to virtually every programming language. From now on, the topics become much more specialized.

#previous chapter M Next chapter & Top

Copyright © 1985-2002 Jonathan E. Sisk. It is against the law to reproduce or distribute this work in any manner
or medium without written permission of the author, ¢/o JES, Inc., P.O. Box 19274, Irvine, CA 92623.

http://www.jes.com/pb/pb_wpl.html (12 of 12) [12/18/2001 11:14:42 AM]

http://www.jes.com/

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 2

Jonathan E. SIsk's
Pick/BASIC: A Programmer's
Guide

WWW Edition January, 2000

Chapter 2
The Related TCL Processes

This chapter will explain the most important TCL (Termina Control Language), system-level procedures
you will have to deal with in order to begin programming in PICK/BASIC. These include using the
Editor, creating and maintaining files, and compiling and running your programs.

The PICK Editor

The Editor is the process through which programs are entered into the computer. It allows the creation,
update, and deletion of itemsin afile. A brief tutorial on the most essential Editor commands is provided
in this chapter.

In general, editorsfall into two categories. There are line editors, like the one about to be discussed, and
there are full-screen editors. A line editor is much more primitive in design. In line editors, you must
position the "line pointer” to the line (attribute) that you want to affect using a positioning command such
as"G" (goto line), "U" (move up), and "N" (move down). With afull-screen editor, you use the numeric
keypad or the arrow keysto position to the line that you want to alter.

If your system has JET, or one of its derivatives such as ULTIWORD or WORDMATE, then you
actually have afull-screen editor available. Invoking the JET editor is accomplished by using the
command "JET-EDIT" in place of the"ED" command. JET hasits own set of commands, many of which
are similar to the commands in the Pick line editor. If you decide to try the JET editor, pressthe "?" key
once it is activated to obtain alist of all of the available JET commands.

Activating The Editor

The following commands are essential for the use of the Editor throughout the course of this book:

ED or EDI'T

Either of these verbs may be used at the TCL prompt character (>) to activate the Editor. It aways has
the general form:

http://www.jes.com/pb/pb_wp2.html (1 of 12) [12/18/2001 11:14:45 AM]

http://www.jes.com/gifs/adsnstuf/pb2bl.jpg

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 2

>ED filenane itemid <cr>

to edit an individual item in afile, or
>ED filenane itemid itemid itemid. <cr>

to edit multiple itemsin afile, or
>ED fil enane * <cr>

to edit all theitemsin afile, or

>SELECT filenane {with selection criteria... } <cr >
n | TEMS SELECTED.

>ED fil enane <cr>

The ED command does not require the itemlist specification when following a SELECT or SSELECT
command.

Before entering the Editor, the requested filename is searched for the specified item-id. If theitem-id is
found, the line pointer isleft a the "top" of theitem. If it isnot found, then a"NEW ITEM" message
appears and the line pointer is positioned to the top of an otherwise empty item. Once the Editor has been
invoked, there are anumber of commands available; the next several sections describe those that are used
the most often.

Inserting New Lines

The Insert Editor command inserts one or more lines:
|

For an example, examine the terminal dialogue in Fig. 2-1. Note that while you are in "insert mode,"
each new line (attribute) is given aline number. To get out of insert mode, press the carriage return key
while the cursor is positioned immediately to the right of a"plus’ (+) sign. Thisreturns control to the
Editor command mode.

>ED filenane itemid
NEW | TEM
TOP

| <cr>
001+* this is line 1 <cr>
002+* this is |line 2 <cr>
003+<cr >

Fig. 2-1. Using the Insert command.

http://www.jes.com/pb/pb_wp2.html (2 of 12) [12/18/2001 11:14:45 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 2
Replacing Existing Lines
To replace aportion or all of an attribute, or arange of attributes, use the Replace command:
R

For example:
. R/ PRI NT/ CRT

replaces, on the current line, the first occurrence of the word "PRINT" with "CRT." The command
. RU999/ PRI NT/ CRT

replaces, in the next 999 lines, all occurrences of "PRINT" with "CRT."

Listing Items to the Screen

To list a specified number of lines on the screen, use the List command:
L

See Fig. 2-2 for an example of using the List command. The "EOI 011" message means that the "End Of
Item" has occurred at line 11. There are no more attributes or lines after this message.

The Shortcut Way to List Items. Most versions of Pick allow "prestored" commands in the Editor:
P

Normally, the only one that is defined automatically is PO (zero), and it issues an "L22" command. To
test this, enter the P command at the Editor command prompt (Fig. 2-3).

>ED filenane itemid <cr>
TOP

. L22<cr>

001 * thisis line 1

002 * thisis |line 2

003 * and so on...

*

*

011 * this is the last |ine...
EAQ 011

Fig. 2-2. Using the List command.

>ED filenane itemid <cr>
TOP

. P<cr>

001 * thisis line 1

002 * thisis line 2

http://www.jes.com/pb/pb_wp2.html (3 of 12) [12/18/2001 11:14:45 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 2

003 * and so on...

*

011 * this is the last line...
EAQ 011

Fig. 2-3. Using the Editor's prestored commands.

Deleting Lines

To delete one or more lines, use the Delete command:

DE
or
DEn

For example;

014 * this line needs to go away. ..

. DE<cr >

This does away with the current line, which in this caseisline 14. Or, you can use the DE command on
multiple lines:

014 * this line is going away. ..

. DE3<cr >

Thisdeletes line 14 and the next two lines, for atotal of threelines.

Moving the Line Pointer

To move the pointer to a particular line n, use the Goto command:

Gn
or
n

For example:

014 * this is line 14
. Gr<cr >
007 * this is line 7

The"G" isoptional. You may also smply enter the line number:

014 * this is line 14
. /<cr>

http://www.jes.com/pb/pb_wp2.html (4 of 12) [12/18/2001 11:14:45 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 2

007 * thisis line 7

Reviewing Changes: The F Command

To review changesin an item, use the Flip command:

F

Thiscommand "flips' Editor buffers. Get used to this. Y ou must use this command before you may
review any changes that have been made to an item:

014 * this is line 14
. F<cr>
TOP

Saving and Exiting
The File command is used to save (or resave) the item being entered or modified. Entering
FI

filesthe item, saving all changes made. For example:

014 * this is line 14
. Fl <cr>
"Ttemid filed.

Exiting without Saving Changes

To abort the edit of an item, use the Exit command. Entering
EX

exits the item without saving any changes. For example:
014 * this is line 14

. EX<cr >
"ITtemid exited.

Note: Unlike other systems, the Editor doesn't have the logic (in most versions of Pick) to warn you to
save the item before exiting, if any changes have been made. Be careful! Some implementations now ask
"ARE YOU SURE? (Y/N)" when using the EX (and FD) commands.

Deleting an Item

This command deletes the current item from the file:
FD

http://www.jes.com/pb/pb_wp2.html (5 of 12) [12/18/2001 11:14:45 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 2

Some versions of the Editor ask if you are "sure" you want to do this, most other versions don't. Caveat
emptier. A TCL command called "RECOV ER-FD" typically is available to recover a deleted item, but
there's a catch. The only time it worksisif you useit to try to recover the last item that was edited and
del eted.

GETTING INTO THE SYSTEM

Now we will walk through the process of getting into the system, creating your account and files, and
entering your programs.

Logging On

To begin asession, thefirst thing to do is"log on" to the system. Every Pick system has an account
called "SY SPROG." This very powerful account contains the commands used to do most of the system
administration functions, such as backups, restores, and maintenance.

Find aterminal, turn it on, and enter "SY SPROG" at the "Logon Please" message.
LOGON PLEASE: SYSPROG<cr >

If the next prompt is"PASSWORD?", then you must find out what the password is and enter it before
you may continue.

After abrief introductory message, which typically welcomes you to the system and tells you the current
system time and date, the computer displaysthe TCL (Terminal Control Language) prompt. On al
systems other than the Microdata (McDonnell Douglas) version of Pick, TCL isindicated by the ">"
prompt character. Microdata usesthe ":" symbol as its prompt character.

The activity generated by entering a command at the TCL prompt is referred to as a process. While the
Pick system is capable of handling multiple processes within an account, for safety's sake you are
encouraged to create your own account. Thiswill protect you from the other users of your system, and
vice versa.

Creating Your Own Account

Enter the following command at the TCL prompt character:
>CREATE- ACCOUNT<cr >

Before we continue, an explanatory disclaimer isrequired. The "CREATE-ACCOUNT" procedure varies
operationally among different implementations of Pick. This means that the questions asked of you by
the CREATE-ACCOUNT process may be in adifferent order or format, but essentially the same
information is needed by all the different versions.

ACCOUNT NAME?your. account . nanme<cr >

The name of your account is up to you. There are certain characters to avoid in your account name (or
‘any item-id, for that matter). These charactersinclude: spaces, arrow keys, single or double quotes,
slashes or backslashes, and never any control characters. Enter your account name and press Return. If

http://www.jes.com/pb/pb_wp2.html (6 of 12) [12/18/2001 11:14:45 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 2
you can't think of one, use"CLASS" as your account name.
L/ RET CODES?<cr >

This cryptic prompt is for the security (retrieval) codes for this account. Retrieval codes are better |eft
alone. Press Return.

L/ UPD CODES?<cr >

Thisisfor the entry of the update codes. Ignore this for now. Maybe forever. Press Return.
MOD, SEP?29, 1<cr>

This prompt alows you to specify the size (modulo) of the MD (Master Dictionary) file in the account
you are about to create. Normally, there is adefault value here of "29,1." If not, enter 29,1 and press
Return. This means that 29 contiguous frames will be set aside for the new MD. Thiswill most likely be
adequate for the next decade or two, or until you add lots of items to the MD, in which case you might
consider increasing the modulo. Choosing modulo is not trivial. Fortunately, that's why there is normally
adefault provided here.

PASSWORD?<cr >

An account password isup to you. If you useit, you will be asked for it each time you log on to your
account.

PRI VI LEGES?SYS2<cr >

The privilege level isimportant. Privilege level two (SY S2) alows access to anything that isin or
available to the account. That's what you want. A detailed explanation of privilege levelsisfound in
Exploring the Pick Operating System or the standard Pick System reference manuals.

Thisisnormally all the information that you need to enter. One or two more questions may be asked of
you. Do the best you can. It's not likely that you'll hurt anything. If the process completes normally,
control returnsto TCL. If not, consult your system manuals for troubleshooting.

Now it's timeto try your new account. Enter this:
>LOGTO your - new account

The LOGTO command allows you to leave the current account to access another. Control normally
returnsto TCL on the new account.

Creating Your Work Files

Before getting into the PICK/BASIC tutorial, some work files must be created. These will hold the data,
programs, and PRO Cs created during the tutorials. These files are established with the CREATE-FILE
command (see Fig. 24).

The CREATE-FILE command places a new file in the current account. The numbers following the
filename indicate the starting disk address, modulo, and separation for the dictionary and DATA levels of
the file, respectively. For the sake of brevity, the messages output from the following CREATE-FILE
commands have been |eft out.

http://www.jes.com/pb/pb_wp2.html (7 of 12) [12/18/2001 11:14:45 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 2

>CREATE-FI LE BP 11,1 29,1 <cr>
[417] FILE ' BP CREATED. BASE = fid. MOD
[417] FILE ' B CREATED. BASE = fid. MD

Fig. 2-4. An example of the CREATE-FILE command.

11. SEPAR
29. SEPAR

i1
[EEY

>CREATE- FI LE STAFF 7,1 11,1 <cr>
>CREATE- FI LE PROCS 1,1 11,1 <cr>
>CREATE- FI LE STATES 1,1 11,1 <cr>

The numbers following the filename specify the size of the file. These are called the modulo and
separation, and a detailed explanation of these is found in Exploring the Pick Operating System.

Preparing the Source File

Thefile in which PICK/BASIC programs reside needs to have a minor operation performed prior to
being able to compile programs. Thisis accomplished by using the Editor to change the "D-pointer" (the
file definition item) in the MD. Note: readers with Ultimate or McDonnell Douglas computer systems do
not need to do this!

Here are the stepsinvolved in preparing the BP file pointer:

>ED MD BP<cr >
TOP

.| <cr>

001 D

. R/ D/ DC<cr >
001 DC

. FI

' BP" FI LED.

The reason that this has to be done is that PICK/BASIC object code has to be handled differently than
"normal" dataitems. Source code refers to the human-readable list of instructions to perform asa
program. In the Pick System, source code resides in the DATA section of files. Object code is produced
by compiling source code into executable, machine-readable code. When a program is compiled, a
"pointer” item is placed in the dictionary of the source filel- This pointer item tells the system where the
object code will be found for execution. The name of the pointer item is the same as the source program
item. Incidentally, thisis exactly the same way that "lists" are handled with the SAVE-LIST command.

Note for Ultimate Users: Ultimate Corporation added a verb called UPDATE-FILE in release 122, when
"security" was implemented. Thiswas ostensibly to prevent users from damaging file definition items
(D-pointers). This change does not have to be done to source files on Ultimate systems, because any file
may contain source and/or object code. However, if you do fedl like doing thisto afile, you must use the
UPDATE-FILE verb; otherwise, you may damage or even destroy the file!

http://www.jes.com/pb/pb_wp2.html (8 of 12) [12/18/2001 11:14:45 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 2

>ED BP HELLO<cr >

NEW | TEM

TOP

.l <cr>

001+l F TIME() < 43200 THEN PRI NT "GOOD MORNI NG' <cr >
002+l F TI ME() >= 43200 THEN PRI NT " GOOD AFTERNOON'<cr >
003+END<cr >

004+<cr >

TOP

. Fl <cr>

' HELLO FI LED.

Fig. 2-5. Entering the HELL O program example.

The ED Command and HELLO Program

PICK/BASIC programs are typically entered through the standard Pick Editor, although any editor will
do. The Pick Editor is activated with the ED or EDIT command, Follow the instructionsin Fig. 2-5, and
enter the program shown. This program is now ready to be compiled, which must be done before it may
be run.

Note: The instructions in this program test the current system "time." In Chapter 1, the internal
representation of time was discussed. The important point to remember is that timeis stored internally as
the integer number of seconds past midnight: "43200" is 12:00 (noon), which is 12 (hours) multiplied by
3600 (seconds per hour).

The command line"ED BP HELL Q" entered at the TCL command prompt (>) instructs the Pick System
to activate the Editor. The program goesinto thefile called "BP," and itsitem-id is (or will be)
"HELLO."

PICK/BASIC Program Names (item-1Ds)

Since Pick storesindividual programs as items (records) in asingle program file and Pick does not limit
the length of the item-id2 (program name), you may use descriptive item-ids. One warning, however:
Never use a program name that has the same name as the source filein which it will reside! These are
some invalid program names.

>ED BP BP
or
>ED AR BP AR BP

Actually, the Pick system will let you get away with this--for the moment. It catches up with you later
when it destroys your file. The next section discusses the BASIC command, which is used to compile
source code into (executable) object code. Normally, when a compile takes place, a pointer to the object
code of the program is placed in the dictionary level of the source file, using the same item-id as the

http://www.jes.com/pb/pb_wp2.html (9 of 12) [12/18/2001 11:14:45 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 2

source item. If there is a program with the same name as the file, there is a potential danger of the object
pointer writing over the file pointer (the pointer to the DATA section of thefile). If this happens, all your
program source items will be lost! Some versions of Pick have built-in protective mechanisms to prevent
this problem.

COMPILING PROGRAMS: THE BASIC COMMAND

The BASIC command activates the PICK/BASIC compiler to translate the source code into object code.
The following examplesillustrate the BASIC command and some of its available options.

>BASI C BP HELLO<cr >

* k% %

'HELLO COWPI LED. 1 FRAMES USED.

Each * represents one source line successfully compiled into executable object code. A listing of the
program may be produced with the L option:

>BASI C BP HELLO (L) <cr>

001 | F TIME() < 43200 THEN PRI NT " GOOD MORNI NG
002 | F TIME() > 43200 THEN PRI NT " GOOD AFTERNOON'
003 END

' HELLO COWPI LED. 1 FRAMES USED.

The listing may be routed to a printer by including the P option:
>BASI C BP HELLO (LP)<cr>

Other options are available. These options are discussed in Appendix B.

ACTIVATING PROGRAMS: THE RUN AND
CATALOG COMMANDS

There are two ways to load and execute a compiled program. Thefirst is the use of the RUN verb:

>RUN BP HELLO<cr >
GOOD MORNI NG

(Unlessit's after 12:00 P.M., of course, in which case the program displays "GOOD AFTERNOON").

The second way isto CATALOG the program. This effectively makes a verb out of the program:

>CATALOG BP HELLO<cr >
' HELLO CATALOGED.

>HELLO<cCr >
GOOD MORNI NG

The rule with regard to cataloging programsis [hat the only programs which must be cataloged are those
which are considered "external" subroutines. While al of your programs do not have to be cataloged, it's
still agood idea. Note that external subroutines do not have to be cataloged on Ultimate systems, unless

http://www.jes.com/pb/pb_wp2.html (10 of 12) [12/18/2001 11:14:45 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 2

the subroutine resides in a different file from the program that callsiit.

From now on in the tutorials, compile all of your programs with the BASIC command, and then
CATALOG each program.

IF IT DIDN'T WORK

If you had any problem with the example called "HELLO," check the code using the Editor. It must be
entered exactly as it appearsin the text.

There are many possible reasons why programs don't compile. Here is a partial list of the most common
compilefailures:

1) Functions or instructions are misspelled. For example: PRONT "HELLO THERE"

2) Quotation marks, used in printing or assigning "Literals" are "unbalanced,” meaning, an odd number
exists. For example:

PRI NT "HELLO THERE

3) A GOTO or GOSUB statement which instructs the program to transfer control to a nonexistent
statement label. For example:

001 10 PRI NT "HELLCO'
002 G&Or0o 99
003 END

4) An IF-THEN or IF-THEN-EL SE statement isn't properly terminated with an END directive. Or,
worsg, is terminated with too many END directives. For example:

| F QTY. ON. HAND < REORDER. PO NT THEN
PRI NT " PRODUCT NEEDS TO BE RECRDERED! "
(HERE | S WHERE THE "END' STATEMENT SHOULD HAVE BEEN)

and the code goes on...

This has the unpleasant side effect of using the next END directive that the compiler encounters as the
terminator for the THEN initiator. Don't worry about this for now. The proper way to prevent this
problem is explained in Chapter 4, at the end of the narrative on Example 2.

Again, the programs in this book were tested and they worked on our test machines. The most important
thing to do isto compare your program listing line-by-line with the program listings from the book. Y ou
may find that you left out a character or two here and there. Don't feel bad if your programs don't always
compile the first time; it happens to everybody.

#previous chapter P Next chapter & Top

Copyright © 1985-2002 Jonathan E. Sisk. It is against the law to reproduce or distribute thiswork in any
manner or medium without written permission of the author, c/o JES, Inc., P.O. Box 19274, Irvine, CA

http://www.jes.com/pb/pb_wp2.html (11 of 12) [12/18/2001 11:14:45 AM]

http://www.jes.com/

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 2

92623.

http://www.jes.com/pb/pb_wp2.html (12 of 12) [12/18/2001 11:14:45 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 3

=G Jonathan E. Sisk's
28 Pick/BASIC: A Programmer's
Guide

Chapter 3
Fundamental PICK/BASIC
Statements and | nstructions

In the first program, many of the most fundamental principles of programming in PICK/BASIC are
discussed. Topics, statements, and functions covered include comments (remarks), PROMPT, PRINT,
INPUT, ABS, SQRT, ALPHA, NUM, END, IF-THEN, STOP, the null string, and LEN.

Enter the program in Fig. 3-1. An explanation of each instruction and technique follows. Note that most
of the spacesin the tutorial programs are put there for visual esthetics. The easier a program isto read,
the easier it isto maintain. Generally, spaces are optional, but there are some cases where they are not.
To be safe, enter the programs exactly as shown in the examples.

Fig. 3-1. Program Example 1.

>ED BP EX 001
TOP

.l <cr>

001 * EX 001

002 * BASIC TERM NAL |1/ O AND CONDI Tl ONAL EXPRESSI ONS
003 * mmidd/yy: date last nodified

004 * JES. author's initials

005 *

006 PROVPT ": "

007 PRI NT

008 *

009 * GET NAME

010 *

011 PRI NT "PLEASE ENTER YOUR NAME "
012 | NPUT NAME

013 PRINT

014 *

http://www.jes.com/pb/pb_wp3.html (1 of 13) [12/18/2001 11:14:49 AM]

http://www.jes.com/gifs/adsnstuf/pb2bl.jpg

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 3

015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
. Fl

* CHECK TO SEE | F THEY WANT TO STOP

*

| F NAME = "" OR NAME = "QUIT" THEN STOP
PRI NT "HELLO THERE " : NAME
PRI NT

*

* NOW GET STRING OR NUMBER
*
PRI NT "PLEASE ENTER A NUMBER OR A STRING OF LETTERS "
| NPUT RESPONSE
| F RESPONSE = "" OR RESPONSE = "QUI T" THEN STOP
PRI NT

*

* CHECK TO SEE | F STRING I S NUMERI C

*

| F NUM RESPONSE) THEN

PRINT "ABS VALUE OF " : RESPONSE : " IS " : ABS(RESPONSE)
PRINT "THE SQUARE IS " : RESPONSE * RESPONSE
PRI NT "THE SQUARE ROOT IS " : SQRT(RESPONSE)
STOP
END

*

* CHECK TO SEE | F STRING | S LETTERS ONLY
*
| F ALPHA(RESPONSE) THEN
PRINT "THE LENGTH OF " : RESPONSE : " IS " : LEN(RESPONSE)
STOP
END

*

* STRI NG MJUST CONTAI N NON- ALPHA AND NON- NUMERI C CHARACTERS

*
PRI NT " YOUR RESPONSE WAS NOT CONSI DERED NUMERI C OR ALPHABETI C
END

<cr>

Having entered the program, you are now ready to compile and run it. From now on, after entering each
program example, compile it with the BASIC verb, catalog it with the CATALOG verb, then type the
program name at the TCL prompt. Once again, here's an example:

>BASI C BP EX. 001<cr>

R I S S b S S S S b S b Sk b b S b S S S S b S S S S S

SUCCESSFUL COWPI LE! 1 FRAMES USED.

http://www.jes.com/pb/pb_wp3.html (2 of 13) [12/18/2001 11:14:49 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 3

>CATALOG BP EX. 001<cr>
' EX. 001" CATALOGED.

>EX. 001<cr >

Once the program loads and begins execution the following prompt appears on the screen:
PLEASE ENTER YOUR NAME:

A feature of this book is the detailed explanation of each new topic, or derivatives of earlier topics,
following the tutorial programs. The instruction, or group of statements and instructions, are repeated
where the narrative explains them. This technique minimizes the amount of backtracking that you will
have to do in order to examine the actual source instructions.

A notefor FORTRAN and COBOL programmers learning Pick. After aquick visual scan of the
program EX.001, or any other PICK/BASIC program, you will notice the total absence of data typing via
implicit assumptions by virtue of the first character in the data/field names (i.e., variables beginning with
| through N do not imply integer data). Nor do you find the ever-present "DATA DIVISION" that all
COBOL programs must contain. Remember that no data typing existsin the Pick System. A fieldisa
fieldisafield.

PROGRAM NAMES AND COMMENT SECTIONS

Thefirst five lines of Programming Example 1 consist of comments:

001 * EX 001

002 * BASIC TERM NAL |1/ O AND CONDI Tl ONAL EXPRESSI ONS
003 * mm dd/yy: date |ast nodified

004 * JES. author's initials

005 *

The Pick System is very flexible regarding the manner in which files and items are named. This usually
results in some rather diverse item-ids, particularly when naming programs. (A program is stored as an
item in the Pick System, so a program name is an item-id). For instance, a programmer may decide to
call aprogram "AP101," which may mean to him that thisis the program to enter and update the
accounts payable vendor file. Others go to the extreme of identifying the nature of the program in its
item-id. For instance, another programmer may call this same program
"ENTER.ACCOUNTS.PAYABLE.VENDOR."

Rather than trying to explain the entire program in the program name, it may be more useful to decide on
asimple item-id and explain the purpose of the program through remarks in the program. A comment
section is simply a standard set of remark statements that appears at the beginning of each program.
Remark statements have little effect on the execution of the program. This technique makes it easier to
work with program files.

http://www.jes.com/pb/pb_wp3.html (3 of 13) [12/18/2001 11:14:49 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 3

The Program Name

It's usually agood ideato use line 1 of each program to repeat the program name:

001 * EX 001

The reason for thisis that programs which are considered external subroutines require a SUBROUTINE
statement on thisline, so you can't dways count on this line being available. Note: Instead of placing a
remark on line one, it is permissible to put the word "PROGRAM," followed by the program name. This
little-known feature has been present for years in the Pick System.

The Program Description

Line two contains a single-line description of the program:

002 * BASIC TERM NAL |1/0 AND CONDI TI ONAL EXPRESSI ONS

Other examples could be "UPDATE THE ACCOUNTS PAYABLE VENDOR MASTER FILE," or
"EXTRACT CUSTOMER LISTS FROM DATABASE,"

Date Last Modified and Author's Initials

The "date last modified" isthe last date the program was changed:
003 * mm dd/yy: date last nodified

Follow a consistent date format, like mm-dd-yy, for example:
003 * 12/15/97: date last nodified

The comment on line 4 gives theinitials of the last person who changed the program, which is useful for
finding and persecuting the guilty party.

004 * JES: author's initials

"Spacer" Remark Lines

Line5isa"spacer remark line," which provides avisual separation of the comment section from the
actual executable code of the program:

005 *

Thistreatment is for visual aesthetics only and has no impact on the actual execution of the program; it
just makes the program look more organized for the benefit of the programmer. Once again, the easier
codeisto read, the easier it isto maintain.

http://www.jes.com/pb/pb_wp3.html (4 of 13) [12/18/2001 11:14:49 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 3

THE PROMPT STATEMENT

The PROMPT statement defines the character to display on the screen when an INPUT statement is
executed:

006 PROWPT ":"

Any expression which produces a single character may be used as the argument. When this statement is
left out of the program, the default prompt character is a question mark.

THE PRINT STATEMENT AND BLANK LINES

The PRINT statement is used to print data on the screen or printer. All by itself on aline, it smply skips
aline on the output device:

007 PRI NT

When followed by an expression, the current value of the expression is displayed or printed. Chapter 15,
Example 13, discusses routing output to the system printer with the PRINTER ON statement.

ANNOTATING THE PROGRAM

Comments, also culled remarks, have been discussed at severa points already throughout this book. The
block of commentsin lines 8-10 serves two purposes:

008 *
009 * GET NAME
010 *

First, it provides the visual spacing to make the source code more readabl e to those who must maintain it
and, second, the comment on line 9 reminds the programmer about the task at hand.

THE PRINCIPLE OF PSEUDOCODE

One important principle of program design is " pseudocode.” "Pseudocode” is the process of describing
program logic in plain English. Since aprogram is simply a set of instructions to perform atask, it is
often necessary to plan out the logic of the problem before starting to write the code that will accomplish
it. Thismay be done by organizing the logic in plain English statements, in the form of remarks. This
way, the logic may be debugged before even one line of executable source code is ever written.

For example, if you wanted to teach arobot how to "make toast,” you have to tell it the steps to perform.
For instance, the robot would have to go to the kitchen, find the bread, remove a dlice, find the toaster,
put the bread in the toaster, push the button, wait for it to cook, remove the bread, and then find a plate to
place it on. Once this sequence of events has been "programmed,” all you need to tell the robot the next
time you want mast is ssimply "make toast." The same principle applies to telling the robot how to make
coffee, eggs, juice, etc. After the robot has been taught all of the individual routines, you may then put

http://www.jes.com/pb/pb_wp3.html (5 of 13) [12/18/2001 11:14:49 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 3

them all together by telling the robot to "make breakfast." To the robot, this means make toast, make
coffee, make eggs, etc. Although this may seem like an elementary example, it introduces the principle of
modularity. Programs typically are comprised of a series of individual, self-standing modules, each of
which performs a specific task.

Asthisrelates to the subject at hand, the entire logic of any program problem may be written first in
comments, as in this example. Once the logic isin place, the source instructions of the appropriate
language may be inserted after the comments, hence the principle of pseudocode.

MORE ON THE PRINT STATEMENT

The PRINT statement in line 11 displays "PLEASE ENTER YOUR NAME" on the screen and positions
the cursor two spaces to the right of the word NAME. Note that the space between the word NAME and
the "character isto force the space between the literal and the cursor.

011 PRI NT "PLEASE ENTER YOUR NAME *

Throughout this book, many other forms of the PRINT statement are explained, including its ability to
print at specific coordinates on the screen or to do special functions like erase the screen. The PRINTER
ON and PRINTER OFF statements also affect the output of PRINT statements.

THE INPUT STATEMENT

The INPUT statement causes the program to wait for the user to enter something on the keyboard:
012 | NPUT NAME

When input isreceived, it is placed into the variable following the INPUT statement, which in this caseis
the variable NAME. Generally, what the user enters on the keyboard must be followed by a press of the
Return key, although Pick provides the ability to automatically issue the Return when a certain number

of characters have been received.

THE IF STATEMENT AND NULL STRINGS

The |IF statement is used to determine whether or not a certain condition applies before continuing
execution. |F statements are always followed by conditional expressions, which are expressions which
derive either a"true" or "false" value. In the Pick System, "true" is represented by a numeric nonzero
(normally 1), and "false" is represented by O (zero) or null.

017 IF NAME = "" OR NAME = "QUIT" THEN STOP

This |IF statement checks to see if the variable NAME contains any data. The portion of the statement
NAME ="" reads like this: If the NAME is null, which means that you simply pressed the Return key,
then the conditional expression istrue; if you entered a< cr >, then the variable NAME will be cleared
(set to null). In PICK/BASIC, the null string is represented as " (two single quotes) or "" (two double
guotes) or even "\\" on some platforms. . The ":" prompt character previously defined in the PROMPT
statement appears to the immediate |eft of the cursor.

http://www.jes.com/pb/pb_wp3.html (6 of 13) [12/18/2001 11:14:49 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 3

| F ANSWER = "Y" THEN ...
| F AMOUNT > 0 THEN ...
| F OLD. AMOUNT # NEW AMOUNT THEN . . .

Note: The situations where the equivalence to 0 (zero) of anull value, which istypically represented by
two quotation marks with nothing between them, occurs in other placesin the Pick System. For example,
if you attempt to add up fields which normally contain numeric data, such as money amounts, and one or
more fields contain null (or any other non-numeric data), then these fields are treated as though they
contained the value O (zero).

A good way to check how your system handles nullsisto try the following statementsin a test program:

001 A=""
002 B =0
003 IF A =B THEN PRINT "YES' ELSE PRI NT " NO'

On most versions of Pick, thiswill print "NO"

BOOLEAN OPERATORS

Two or more conditional expressions may be connected by a Boolean operator, which is one of the words
AND or OR. Normally, when only one conditional expression follows an |F instruction, then the
statement (or statements) following the THEN is (are) executed if the expression evaluates true.
Otherwise, unless an EL SE is present, control "falls through” to the next physical line of the program.
The ELSE initiator is optional in the IF construct, and is explained at the end of Example 2 in Chapter 4.

When two conditional expressions are connected with an OR, then either of them evaluating true causes
the statement(s) following the THEN initiator to be executed. Having an AND connect the conditional
expressions means that both expressions must evaluate true in order for the statement(s) following the
THEN initiator to be executed.

This line has two possible choices for executing the STOP statement which follows the THEN initiator.
Either anull (carriage return or line feed) or the word QUIT would have caused the STOP statement to
be executed.

Here are sample conditional expressions using Boolean operators:
| F ANSVER = "Y" OR ANSVER = "" THEN ...

This statement indicates that if either of the conditional expressions evaluate to true, then the statement
(or statements) after the THEN initiator will be executed.

| F BALANCE. DUE > 0 AND | NTEREST. FLAG = "Y" THEN ...

This second statement indicates that both of the conditional expressions must evaluate true in order to
execute the statement (or statements) following the THEN initiator.

http://www.jes.com/pb/pb_wp3.html (7 of 13) [12/18/2001 11:14:49 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 3

BAIL-OUT MECHANISMS: THE CONCEPT OF
"ESCAPE PODS"

Eventually (if it hasn't happened to you already) you will run a program that prompts you to enter
something and you will not know exactly what it wants. Maybe it needs something in a particular format,
like a date or money amount, but you have no way of knowing. So you try pressing Return and it
displays something like "INPUT REQUIRED!" and prompts you again. You try "END" or "QUIT" or
“?' or "HELP." Then you try your favorite obscenity, again to no avail. In frustration, you try the data
entry operator's last resort--the BREAK key--and find that it has been disabled. At times like thisyou
reconsider your future in data processing and consider aless frustrating career, like religious cult
management or being an air traffic controller.

To make along story short, it is avery thoughtful touch to allow operators an escape or "bail-out"
mechanism. This means that any time in your programs that an operator is prompted to input data, one
consistent response is always available. This word (or character) istheir panic button. In al of the
tutorial examples, QUIT is used as the magic word. Y ou may choose anything you want, but whatever
you choose should be the first thing you teach your data entry operators. Tell them that when they enter
thisword, it means "Get me out of here!"

Implementing the escape pod principle has some remarkable side effects. Firgt, it greatly reduces the
fears of your users, assuring them that they may always escape in an orderly fashion from any program
without hurting anything. Second, it allows you, the programmer, the benefit of cleaning up any
unfinished program business before returning the user to the process or menu that sent them there.

The most important aspect of implementing your escape pod scheme is that you remain consistent in
what you check or test for to allow them to bail out. Don't make it " X" in one place, "QUIT" in ancther,
and "END" in yet another.

Line 17 iswaiting for either anull or "QUIT" to allow the operator to get out. If that's what the operator
inputs, then the program stops.

THE STOP STATEMENT

The STOP statement immediately terminates the execution of a program:
017 IF NAME = "" OR NAME = "QUI T" THEN STOP

If the program was activated from TCL, by entering >RUN BP EX.001, or >EX.001, then control returns
to the TCL prompt character. If, however, the program had been executed from a menu, perhaps written
in the PROC (procedure) language, then control automatically returns to the menu. The ABORT
statement is the first cousin to the STOP statement. The difference is that when the ABORT is executed,
control returns unconditionally to TCL, regardless of how the program was activated.

http://www.jes.com/pb/pb_wp3.html (8 of 13) [12/18/2001 11:14:49 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 3

PRINTING EXPRESSIONS WITH PRINT

This statement prints the literal "HELL O THERE "on the screen and prints the current value of NAME,
meaning, whatever you entered previously at the prompt to enter your name. Note that there is a space
after the word "THERE" to force a space between the word "THERE" and your name.

018 PRI NT "HELLO THERE " : NAME

This print expression was composed by a concatenation operation. First the literal "HELLO THERE
"was concatenated (or linked) to the current value of the NAME variable. Once the concatenation was
complete, the entire expression was printed.

Avoiding Redundancy and Repetition. Many of the instructions that have been covered up until now,
such as PRINT, INPUT, IF-THEN, PROMPT, and comments, are used extensively throughout the rest of
the tutorials. Rather than explaining the same things over and over, they will not be documented hereafter
unless some new twist or nuance is being introduced.

THE NUM FUNCTION

The NUM function is one of several Pick intrinsic functions considered to be a " self-standing"
conditional expression, i.e., one which evaluatesto either a zero or null for "false,”" or a numeric nonzero
value (normally 1) for "true."

030 | F NUM RESPONSE) THEN

031 PRI NT "ABS VALUE OF " : RESPONSE : " IS " : ABS(RESPONSE)
032 PRI NT "THE SQUARE IS " : RESPONSE * RESPONSE

033 PRI NT "THE SQUARE ROOT | S ": SQRT(RESPONSE)

034 STOP

035 END

This statement tests the string received in RESPONSE to determine whether or not it isanumber. In the
Pick System, anumber isastring of digits with an optional period or decimal point. If it is determined to
be a number, then al of the statements, up to and including line 34, are executed. If the response is not a
number, then execution continues after the next END statement (which occurs on line 35).

An important note: Some, but not all, versions of the Pick System consider "null" to be numeric. This
adds alevel of complexity to your |F statements when they determine whether something is numeric; it
must additionally be checked to seeif it isnull or not null, as the case may be.

If you did enter a number, then the statements on lines 31-35 are executed.

THE ABS FUNCTION

The ABS function produces the absolute (positive) value of a numeric string:
031 PRINT "ABS VALUE OF " : RESPONSE : " IS " : ABS(RESPONSE)

http://www.jes.com/pb/pb_wp3.html (9 of 13) [12/18/2001 11:14:49 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 3
Suppose that you had entered -123.45 as your response; Line 31 would display:
ABS VALUE OF -123.45 | S 123

The ABS function comes in handy when printing the bottom-line totals of profit and loss reports for
unstable companies.

Note that no range checking took place on the numbers you entered. This program may produce unusual
results if the number istoo large.

FINDING SQUARES AND SQUARE ROOTS

The next two lines utilize the PRINT statement and the SQRT function to determine squares and square
roots.

032 PRINT "THE SQUARE IS " : RESPONSE * RESPONSE
033 PRINT "THE SQUARE ROOT |S " : SQRT(RESPONSE)

The statement in line 32 prints the message "THE SQUARE IS ", followed by an expression which takes
the value of RESPONSE and multipliesit by itself. Thisis here ssimply to demonstrate the fact that
formulas may be 1) performed in the same line asa PRINT statement, or 2) may be "assigned” to a
variable on a separate source line and have the value displayed here. Both ways am discussed throughout
this book.

Thereis aso the intrinsic function EXP, which may be used to raise a number to other exponential
values, aswell as the " operator that also indicates exponentiation. See Appendix B for the syntax.

The SQRT function produces the square root of a numeric expression. This displays the message shown,
followed by the square root of RESPONSE.

THE END STATEMENT

When an IF-THEN statement or IF-THEN-EL SE statement spans more than one physical line of a
program, it must be terminated with an END statement:

035 END

This principleisreferred to as the initiator/terminator relationship, and is discussed immediately
following this example. This particular END statement terminated the THEN initiator which started at
line 30.

THE ALPHA FUNCTION

The ALPHA function, like the NUM function discussed earlier, is aso considered a conditional
expression, one which evaluates to a true (numeric nonzero) or false (zero or null) condition. They are
most often used in IF- THEN, IF-THEN-ELSE, and in CASE constructs:

http://www.jes.com/pb/pb_wp3.html (10 of 13) [12/18/2001 11:14:49 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 3

039 | F ALPHA(RESPONSE) THEN

040 PRINT "THE LENGTH OF " : RESPONSE : " IS " : LEN(RESPONSE)
041 STOP
042 END

This statement tests the variable RESPONSE to determineif it contains only alphabetic characters. This
means no characters other than the letters A through Z (upper- or lowercase). If this evaluates true, then
the statements up to the next END statement are executed. Otherwise, execution of the program
continues after the next END statement, which happens to occur on line 42.

If this message appears, then it means that the response that you provided to the variable RESPONSE
was not considered either entirely numeric or alphabetic:

046 PRI NT "YOUR RESPONSE WAS NOT CONSI DERED NUMERI C OR ALPHABETI C'
Consequently, this line displays the message shown and program execution stops at the next line.

THE LEN FUNCTION

If you enter a string of characters that is considered to be composed entirely of al phabetic characters at
the INPUT statement on line 24, then the LEN statement on line 40 will be executed:

040 PRINT "THE LENGTH OF " : RESPONSE : " IS " : LEN(RESPONSE)

The LEN function determines and reports the number of charactersin astring or string expression.
Suppose you enter "ARISTOTLE" into the variable RESPONSE. Line 40 then displays

THE LENGIH OF ARI STOTLE |S 9

THE FINAL END STATEMENT

The END statement (more accurately called a compiler directive) occursin two placesin PICK/BASIC.
Thefirst occurrence iswhen it is used as aterminator for amultiline IF-THEN or IF-THEN-EL SE
statement. The second and final form is as a program terminator, meaning that thisisthe logical end of
the program. On most Pick systems, if the final END statement is|eft out, one is automatically assumed
at the end of an item (remember, even programs are considered "items"). Y ou should include the final
END statement just for consistency. This END statement on line 47 terminates the program.

Thisfinishes the first example. Before moving on to Example 2, take a closer look at the IF statement.

THE IF-THEN STATEMENT

The |F statement has perhaps the greatest variety of possible syntactical forms of any instruction in the
language. Since it is one of the most frequently used statements, it isimportant to understand the
mechanics of how and when they are used. The examples and discussions will first focus on the
"simplest" forms. As you progress through the examples, more sophisticated cases and uses are
uncovered. Example 1 illustrates the forms.

http://www.jes.com/pb/pb_wp3.html (11 of 13) [12/18/2001 11:14:49 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 3

The Single-Line Form

The"single-line" form means that the entire logic test, and the instructions which are to be executed
when it evaluates true, are contained in one physical source line. The first general form has a syntactical
form which appears as:

| F condi tional.expressi on THEN st at enent

If the conditional expression evaluates true (numeric nonzero), then the single statement after the THEN
initiator is executed and program execution continues on the next line of the program. If it evaluates false
(zero or null), program execution continues from the next line.

Since statements may be delimited by a semicolon, the next form of this occurs as:
| F conditional.expression THEN statenent; statenent; statenent...
When this conditional expression evaluatestrue, al of the statements following the THEN initiator are

executed. Thereisno logical limit to the number of statements that may be put here but, as arule of
thumb, use the multiline form of the IF statement when more than afew statements are to be executed.

The single-line form is useful when there is only one statement to execute upon evaluation. There are,
however, many cases in programs where many statements need to be performed on atrue condition.
Rather than trying to place these all on one physical line with semicolons between the statements, thereis
the next logical extension to the IF-THEN construct.

The Multi-line IF-THEN Construct

The multiline IF-THEN construct has the general form:

| F condi tional . expressi on THEN
st at enment
st at enment

END

| F conditional. expression THEN
st at enent (S) :
| F condi tional . expressi on THEN
statenent (s).
| F conditional. expression THEN
stat enment (s)
END
st at enent (s)
END
st at enent (' s)
END

Fig. 3-2. Nesting conditional statements.

http://www.jes.com/pb/pb_wp3.html (12 of 13) [12/18/2001 11:14:49 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 3

The multiline form introduces the concept of the initiator/terminator relationship. When the THEN
instruction appears as the last word in an IF- THEN statement, it is considered an initiator, meaning that
it must be terminated later with an END statement. When the conditional expression evaluates false,
program execution continues with the first executable statement after the END statement.

There are cases where "nested” |F statements are needed (Fig. 3-2). When they are the last word on a
source line, remember to terminate every THEN or EL SE with an END.

Avoid having too many levels of nested |F statements. It makes programs more difficult to figure out and
Increases the probability of logic and syntax errors (see the use of the CASE construct in Chapter 9).
Also, to assist in making the program more readable, try to align the END statement underneath the IF
statement that initiated it.

Note that many instructionsin the PICK/BASIC language allow (or require) the THEN and/or ELSE
construct. Anywhere they are allowed/required, the single- or multiple-line forms may be used.

Note also the fact that on all versions of Pick the first END compiler directive encountered which is not
part of a THEN/EL SE construct above, causes the program to stop compiling.

This concludes Example 1. Now it's time to take areview quiz on the principles discussed. (The answers
are found in the appendix.)

REVIEW QUIZ 1

1) What isavariable?

2) How are PICK/BASIC programs entered into the computer?

3) After aprogram is entered, what two things must be done to activate it?

4) What are remark statements, and why are they used?

5) What characters may safely be used to separate multicharacter variable names?
6) What statement terminates the execution of a program?

7) What is a conditional expression?

8) How many programmers does it take to change alight bulb?

#previous chapter M Next chapter & Top

Copyright © 1985-2002 Jonathan E. Sisk. It is against the law to reproduce or distribute this work in any
manner or medium without written permission of the author, c/o JES, Inc., P.O. Box 19274, Irvine, CA
92623.

http://www.jes.com/pb/pb_wp3.html (13 of 13) [12/18/2001 11:14:49 AM]

http://www.jes.com/

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 4

8 Jonathan E. SIsk's
Pick/BASIC: A Programmer's
Guide

WWW Edition January, 2000

Chapter 4
The Concept of Loops

In the first programming example, an important aspect of Pick/BASIC was covered: data hasto be
checked to be surethat it adheresto some some format or condition. Thisis called data validation.
Even though the Pick System has no concept of data types, as programmers and users we must ensure
that data entered via the terminal is checked. We cannot effectively use a system if the contents of its
items are not reliable.

Program Example 2 continues in this exploration of editing techniques and introduces the principles of
reiteration ("looping"), string manipulation, and some expansions on the IF-THEN construct. Statements
and functions covered include: MATCHES, GOTO, COUNT, TRIM, IF-THEN-EL SE,
LOOP-UNTIL-REPEAT.

Thefirst seven lines of the example reiterate principles, concepts, and instructions covered in Example 1.
From this point on in the book, only new topics and new ideas on previous topics are examined.

Enter Example 2, shown in Fig. 4-1.

Fig. 4-1. Program Example 2.

TOP

N

001 * EX 002

002 * DATA VALI DATI ON, BRANCHI NG AND LOOP STRUCTURES
003 * mm dd/yy: date |ast nodified

004 * JES. author's initials

GOHRS

006 PROWPT ":. "

007 *

008 10 * GET VALID SCCI AL SECURI TY NUMBER
009 *

010 PRI NT

011 PRI NT "ENTER SOCI AL SECURI TY NUMBER (nnn-nn-nnnn) ":

http://www.jes.com/pb/pb_wp4.html (1 of 13) [12/18/2001 11:14:52 AM]

http://www.jes.com/gifs/adsnstuf/pb2bl.jpg

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 4

012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057

| NPUT SOCI AL. SECURI TY. NUMBER
| F SOCI AL. SECURI TY. NUMBER = "QUI T" THEN STOP
*

* CHECK RESPONSE FOR ACCEPTABLE PATTERN

*

| F SOCI AL. SECURI TY. NUMBER MATCHES "3N -'2N -'4N' THEN
PRI NT "THAT' S A GOOD NUMBER' ; * MJST BE GOOD.

END ELSE
PRI NT " SORRY, NOI' A GOOD NUMBER. TRY AGAI N

G&Oro 10 ; * MUST NOT BE GOOD.

END

*

20 * CGET VALI D DATE
*

PRI NT

PRI NT "ENTER A DATE (mm dd-yy) "
| NPUT TEST. DATE

| F TEST. DATE = "QUI T" THEN STOP
*

* CHECK "FI XED' PATTERN MATCH FI RST
*
| F TEST. DATE MATCHES "2N -' 2N -'2N' THEN

PRI NT

PRI NT " DATE PASSED FI XED PATTERN MATCH' ; * YUP. | T PASSED.
END ELSE

PRI NT

PRI NT " DATE FAI LED FI XED PATTERN MATCH' ; * NOPE. NO GOOD.
END

*

* NOW CHECK VARI ABLE PATTERN MATCH
*
| F TEST. DATE MATCHES " 1NONL1XINON1X2NON' THEN
PRI NT
PRI NT " DATE PASSED VARI ABLE PATTERN NMATCH'
END ELSE
PRI NT
PRI NT " DATE FAI LED VARI ABLE PATTERN NMATCH'
END

*

* GET STRING FOR ALPHA AND MATCHES TEST

*

LOOP
PRI NT
PRI NT "ENTER A WORD FOR THE ALPHABETI C TEST"
| NPUT ALPHA. STRI NG

UNTI L ALPHA(ALPHA. STRI NG DO

http://www.jes.com/pb/pb_wp4.html (2 of 13) [12/18/2001 11:14:52 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 4

058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103

PRI NT

PRI NT " SORRY, THAT FAILED THE ALPHA TEST. TRY AGAI N
REPEAT
| F ALPHA. STRING = "QUI T" THEN STOP

*
* PASSED ALPHA, NOWTRY | T WTH " MATCHES"
*

| F ALPHA. STRI NG MATCHES " O0A" THEN ;* THAT' S A ZERO
PRI NT

PRI NT "THAT ALSO PASSED THE MATCHES TEST"

END

*

* CGET SENTENCE FOR " COUNT" TEST

*

PRI NT

PRI NT "ENTER SEVERAL WORDS EACH SEPARATED BY A BUNCH OF SPACES"
| NPUT WORD. STRI NG

| F WORD. STRING = "QUI T" THEN STOP

X
* DETERM NE THE NUVBER OF SPACES

NUMBER. OF. SPACES = COUNT(WORD. STRING, ")
X

* TELL OBSERVER HON MANY SPACES THERE ARE
PRI NT

PRI NT " YOUR RESPONSE CONTAI NED' : NUMBER. OF. SPACES : " SPACES"
*

* STRI P EXTRA SPACES

*

WORD. STRI NG = TRI M WORD. STRI NG)
*

* DETERM NE NUMBER OF SPACES AFTER STRI PPI NG W TH TRI M

*

NUVBER. OF. SPACES = COUNT(WORD. STRING, " ")
*

* TELL OBSERVER THE NEW NUMBER

*

PRI NT

PRI NT "AFTER TRI MM NG THERE ARE" : NUMBER OF. SPACES : " SPACES"
*

* SHOW OBSERVER THE STRI NG AFTER THE TRIM

*

PRI NT

PRI NT "HERE' S WHAT THE STRI NG LOCKS LI KE AFTER THE TRIM "
PRI NT

http://www.jes.com/pb/pb_wp4.html (3 of 13) [12/18/2001 11:14:52 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 4

104 PRI NT WORD. STRI NG
105 END

A Note about Program Execution. A PICK/BASIC program begins executing at the first executable
(non-remark) statement in the program and then "walks down" through the program, one statement at a
time, until it runs out of statements and the program stops. V arious statements are used to overcome this
default sequence of events. The |F statements are used to control which statements are executed,
depending on the outcome of tests conducted in their conditional logic. The GOTO statement makes the
program resume execution at alocation other than the next physical source line, by transferring program
execution to a statement label. Various other statements provided in PICK/BASIC allow the program to
overcome the default sequential execution of a program.

USING STATEMENT LABELS

There are occasions in a program where execution may have to transfer to a point other than the next
immediate line. Most often this is because a section of code must be repeated, or to bypass certain
instructions. This phenomenon is known as looping and involves the use of statement labels. (Note that
there are other, even better methods available to perform loops.)

On most Pick systems, a statement label is a number at the beginning of a sourceline. In our example:
008 10 * GET VALID SOCI AL SECURI TY NUMBER

Note that the attribute (or line) numbers (*008" in this example) have nothing to do with statement labels
("010" in this example). Line numbers are placed on the left side of the screen by the Editor.

Statement labels are optional in PICK/BASIC. They are only used to indicate the destination of a GOTO
or GOSUB statement elsewhere in the program. It isagood idea, however, to insert them only when they
have a purpose. Unnecessary statement labels might be misleading during debugging and maintenance.

Spaces are generally not important to the syntax of a program. Some compilers are sensitive to the
placement of spaces between variables and keywords (PICK/BASIC instructions), so it is advisable to
put spaces between each keyword/variable in a statement. When a statement label is placed on a source
line in a program, it must be the first non-blank character on the line and must be followed by avalid
PICK/BASIC statement. One popular convention isto have only remark statements on source lines that
contain statement labels, as in the previous example.

Some implementations of Pick allow statement labels to contain or consist of aphabetic characters. For
example, on systems which support alphabetic labels, asillustrated in Fig. 4-2.

033 GOSUB PRI NT. DETAI L. LI NE
*

*

127 PRI NT. DETAI L. LI NE: ;* ROUTINE TO PRI NT DETAIL LI NE ON CHECK

http://www.jes.com/pb/pb_wp4.html (4 of 13) [12/18/2001 11:14:52 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 4

Fig. 4-2. Using a phabetic statement |abels.

THE MATCHES RELATIONAL OPERATOR

Online 17, atest is made to determine whether the input matches a predetermined pattern, using the
MATCHES relational operator:

017 I'F SOCI AL. SECURI TY. NUMBER MATCHES "3N -'2N -'4N' THEN

If it does match, then the message "THAT'S A GOOD NUMBER" appears on the screen, and program
execution continues after the END statement on line 22. If it does not match the pattern, then the message
"SORRY, NOT A GOOD NUMBER. TRY AGAIN" appears on the screen and program execution
transfers, viathe GOTO statement, back to line 7, where the statement label "10" appears. Using the
GOTO statement in this form illustrates one means of setting up a repetitive loop function.

The MATCHES (or MATCH) relational operator checks data against a pattern. Three pattern-match
operators are available: "N" for numeric, "A" for aphabetic and " X" for wildcards (any character). These
pattern-match operators must be preceded by an integer number (or zero), which indicates the exact
length of the number of characters that will be accepted. In addition to the three pattern-match operators,
Literals may be specified by enclosing literal stringsin quotes. Parts A through D of Fig. 4-3illustrate
various pattern matches.

The pattern-match string in line 17 of the program indicates that the only string that will be accepted is
one in which the first three characters are numbers, followed by a hyphen (-), followed by two numbers,
another hyphen, and four more numbers. (When a pattern match operator is preceded by a zero, any
number of the character type are accepted.)

Part A of Fig. 4-3 shows aform similar to line 17, here applied to dates. This form is technically correct
but is not very flexible; it forces the operator to precede the one-character months (like May) and days of

the month (like the fifth) with a0 (zero) during entry. Further, it only allowsthe "-" as adelimiter.

Mat ch Accept abl e Unaccept abl e
expr essi on I nput | nput
"2N -' 2N -' 2N 12-01-97 12/ 01/ 97
12-1-97

" 1NON1X1NONLX2NON' 12-12-97 1DEC97

12/ 12/ 1997 12-12

2-2-97 1- -1
" 1A2N1A3N' A22T003 A2T03
"1A0A , ' 1A0A" PALMER, ARNIE ARN E PALMER

Fig. 4-3. Examples Of pattern matching expressions for A) date input, B) generalized date input, C)
combined alphabetic and numeric entries, and D) common data entry conventions.

http://www.jes.com/pb/pb_wp4.html (5 of 13) [12/18/2001 11:14:52 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 4

The Pick System does not require leading zeros or any specific delimiter between months, days, and the
year. The only ruleisthat the delimiter must be non-numeric, and consistent. The next pattern match
accepts virtually any valid "external" date format.

This expression literally reads, "Look for one number (1N) followed by any length of numerals (ON),
which also includes zero numerals, followed by any character (1X) as a delimiter, and so on. Thisvery
"generalized" date pattern match handles just about any valid date. Using this technigue prevents you
from having to code individually all the possible pattern matchesin a complex IF-THEN statement using
multiple OR clauses.

The third example of Fig. 4-3 illustrates a pattern composed of letters and numbers. It specifically
requires one alphabetic character, followed by two numbers, followed by another single aphabetic
character, followed by three numbers. Part D illustrates a pattern of alphabetic characters, separated by
the comma. This shows how the MATCHES operator may be used to enforce data entry conventions,
which assist in standardizing the methods by which datais entered.

THE IF-THEN-ELSE CONSTRUCT

At the end of Example 1 there was an explanation of the single-line IF- THEN and the multiline
IF-THEN constructs. The other extension to the | F statement is the EL SE construct, which in this
example appearsin lines 17- 22:

017 I'F SOCI AL. SECURI TY. NUMBER MATCHES "3N -'2N -'4N' THEN

018 PRI NT "THAT' S A GOOD NUMBER' ; * MJST BE GOOD. LET'S CONTI NUE
019 END ELSE

020 PRI NT " SORRY, NOI A GOOD NUMBER. TRY AGAI N

021 G&Or0 10; * MJUST NOT BE GOOD.

022 END

The THEN initiator precedes the statement, or statements, and executes when the conditional expression
evaluates true (numeric nonzero). The EL SE construct precedes the statements and executes on afalse
condition (i.e., zero or null).

The Single-Line Form

Thefirst, and simplest, general form of the single-line IF-THEN-EL SE construct is:
| F conditional .expression THEN statement EL SE statement

Thisreads, "If the conditional expression evaluates true, then the single statement after the THEN
initiator is executed and program execution continues on the next line of the program,; if the conditional
expression evaluates false, then the single statement after the EL SE initiator is executed and program
execution continues on the next line of the program."

Since statements may be delimited by semicolons the next form of this construct occurs as.

| F conditional .expression THEN statement; statement EL SE statement; statement...

http://www.jes.com/pb/pb_wp4.html (6 of 13) [12/18/2001 11:14:52 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 4

(Notethat thisis till the single-line form!) If the conditional expression evaluates true, then the
statements after the THEN initiator are executed in turn. If it evaluates false, then al of the statements
after the EL SE initiator are executed. Once again, there is no limit to the number of statements that may
follow the THEN or EL SE clause, but when there's more than one, it makes the program much more
mai ntainable to have each statement on a separate line.

The Multiline Form

Asdiscussed earlier in the explanation of the single-line form, it is generally accepted that when thereis
more than one statement to perform after the THEN or EL SE initiator, then the multiline form is used.
This version has the general form:

| F condi tional . expressi on THEN
st at enent
st at enment
st at enent
END ELSE
st at enment
st at enent
st at enent
END

Thisform also relies upon the initiator/terminator relationship introduced earlier. When the THEN
appears as the last word on aline, it is considered an initiator, which means that it must be terminated on
a subsequent source line with an END statement.

The same situation holds true with the EL SE clause. When the EL SE appears as the last word on aline, it
too must be terminated later with an END statement.

When the conditional expression evaluates true, all of the statements up to the next END EL SE statement
are executed. Because of the EL SE clause, after these statements execute, execution transfersto the first
executable statement after the next END statement. When the conditional expression evaluates false,
execution transfers to the statements following the END EL SE statement, and after execution, program
execution continues with the next executable statement after the END statement.

THE GOTO STATEMENT

The GOTO statement makes the program resume execution at the first statement following the label
number that follows the GOTO statement. (Remember that the source line numbers along the | eft side of
the screen are placed there by the Editor, and have nothing to do with statement labels.) If thislineis
executed, program execution transfers to statement label "10," which happens to occur on source line 8.

021 GOTO 10; * MJST NOT BE GOCD. MAKE THEM TRY AGAI N.

Here is another example of the GOTO statement:

http://www.jes.com/pb/pb_wp4.html (7 of 13) [12/18/2001 11:14:52 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 4

001 COUNTER = O

002 10 COUNTER = COUNTER + 1
003 PRI NT COUNTER

004 | F COUNTER = 5 THEN STOP
005 GOTO 10

Thisillustrates the logic behind using the GOTO statement to perform loops. In this case, the variable
COUNTER isassigned an initial value of zero on line 1. On line 2, COUNTER is incremented by taking
its current value and adding 1 (one) to it. The result of the calculation is assigned to the variable
COUNTER so that its value isnow 1 (one). Line 3 prints the current value of COUNTER, which outputs
al (one) on the next line on the screen. Line 4 is where the test takes place. The logic of line 4 indicates
that if the current value of COUNTER is 5, then the program stops. Since there is no EL SE clause in the
|IF-THEN statement, the logic "falls through" to the next line (5) each time through the loop until the
valuein COUNTER reaches 5. The GOTO statement on line 5 unconditionally transfers program
execution to line 2, where it finds the statement label "10."

While some programmers use GOTO statements as a standard practice, many programmers never use
them. The reason that GOTOs are forbidden in some programming shops is that when they are overused
and/or used incorrectly, they make program logic much harder to analyze--leading to what is often called
"spaghetti code.”

Forbidding GOTO statements is a technique that is frequently associated with the concept of structured
programming, which is discussed in Chapter 13, following the discussion of subroutines and loops.

FIXED AND VARIABLE PATTERN MATCHES

This block of code illustrates the principles mentioned earlier in the explanation of pattern matches:

033 I F TEST. DATE MATCHES "2N -'2N -'2N' THEN

034 PRI NT

035 PRI NT " DATE PASSED FI XED PATTERN MATCH' ; * YUP, | T PASSED.
036 END ELSE

037 PRI NT

038 PRI NT " DATE FAI LED FI XED PATTERN MATCH'; * NOPE, NO GOOD.
039 END

Specifically, the program is waiting for the input of a date. After receiving the input, online 33 it is
tested for a"fixed" pattern of 2 numbers followed by a"-" delimiter, two more numbers, another dash,
and two more numbers. If the input adheres to this format, the message from line 35 displays; otherwise
the message from line 38 displays.

The pattern match on line 43 is much more flexible about accepting input. Although it looks much more
complicated, the benefit achieved in using it outweighs the complexity of coding it.

043 | F TEST. DATE MATCHES " 1NON1X1NON1X2NON' THEN
044 PRI NT

http://www.jes.com/pb/pb_wp4.html (8 of 13) [12/18/2001 11:14:52 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 4

045 PRI NT " DATE PASSED VARI ABLE PATTERN MATCH'
046 END ELSE

047 PRI NT
048 PRI NT " DATE FAI LED VARI ABLE PATTERN MATCH'
049 END

Specifically, this pattern match looks for at least one number, followed by any character, at least one
number, another character, and then at least two numbers.

THE LOOP CONSTRUCT

The concept of loops was introduced earlier in this example. There are actually several methods available
to perform loops. Coincidentally, thisoneis called "LOOP":

053 LOCP

054 PRI NT

055 PRI NT "ENTER A WORD FOR THE ALPHABETI C TEST"

056 | NPUT ALPHA. STRI NG

057 UNTIL ALPHA(ALPHA. STRI NG DO

058 PRI NT

059 PRI NT " SORRY, THAT FAILED THE ALPHA TEST. TRY AGAI N
060 REPEAT

The LOOP construct has nearly as many possible forms as the IF- THEN statement; for the most part,
however, there are several relatively "standard" methods of use. One such formisillustrated in Fig. 4-4.

001 COUNTER = O ;* Assign initial value

002 LOOCP ;* Start/Return point

003 COUNTER = COUNTER + 1 :* Increnent Counter
004 PRI NT COUNTER ;* Di splay Counter

005 UNTIL COUNTER = 5 DO :* Check to see if done
006 REPEAT :* Not done, return to LOOP

007 STOP :* W're outta here...

Fig. 4-4. Standard form of the LOOP construct.

This standard form effectively does the same thing as the loop described earlier, which used the GOTO
statement. Note that the LOOP form does not require statement labels or GOTO statements.

On line 1 of Fig. 4-3, the variable COUNTER isinitialized to zero. On line 2 the LOOP statement
appears, which indicates the beginning of a LOOP process. Thisis the point at which program execution
returns when the next REPEAT statement is executed. The statements on lines 2 and 3 execute
unconditionally, incrementing the value of COUNTER by 1 (one) and printing its value.

At line 5, the conditional expression test takes place to determine when to exit the loop. Line 5 reads, "If

http://www.jes.com/pb/pb_wp4.html (9 of 13) [12/18/2001 11:14:52 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 4

the current value of COUNTER isNOT 5, then REPEAT the process." Otherwise, when COUNTER
does reach 5, execution transfers to the next statement after the REPEAT statement. In this case, that's
line7.

THE UNTIL CLAUSE AND DO INITIATOR

Each time the LOOP statement is initiated, there must be an UNTIL (or WHILE) clause:

057 UNTIL ALPHA(ALPHA. STRING DO

The UNTIL/WHILE is aways followed by a conditional expression and the initiator, DO, in the form:
UNTIL conditional.expression DO

or

WHILE conditional .expression DO

On line 57, the conditional expression tests the contents of the variable ALPHA.STRING to determine if
it isentirely composed of alphabetic characters. The logic of thislinereads, "If ALPHA. STRING
contains only alphabetic characters, meaning that the ALPHA function evaluates true, then exit the loop."
This means that program execution continues at line 61. Otherwise, the message "SORRY, THAT
FAILED THE ALPHA TEST. TRY AGAIN" prints, and the REPEAT statement forces the loop to start
over from line 53, where the L OOP statement occurs.

The basic difference between the UNTIL and the WHILE clauseisinitslogic. The UNTIL form works
until atrue (or positive) result occurs as a result of its conditional expression. The inverse of thisisthe
WHILE form, which works while its conditional expression evaluates as true (numeric non- zero), or
until it evaluates as false (zero or null). Fortunately, since they are so close in meaning, you may use one
form for nearly every loop.

Note: On many systems, the UNTIL and WHILE clauses are optional in the LOOP construct. The EXIT
statement may be used to terminate the loop.

A COMPARISON OF MATCHES AND ALPHA

Line 65 of the example, using the MATCHES relational operator, checks the input to determineif itis
composed entirely of alphabetic characters, just like the ALPHA function did earlier:

065 | F ALPHA. STRI NG MATCHES "OA" THEN

066 PRI NT

067 PRI NT " THAT ALSO PASSED THE MATCHES TEST"
068 END

Thisillustrates an important principle in the Pick System. Thereis virtually always more than one way to
do somethingl. These two separate functions only appear to be identical. The ALPHA function is, in
fact, more efficient in terms of the amount of CPU "horsepower” required to perform the function, This

http://www.jes.com/pb/pb_wp4.html (10 of 13) [12/18/2001 11:14:52 AM]

Jonathan E. Sisk's "Pick/BASIC: A Programmer's Guide": Chapter 4

happens to hold true when the NUM function is compared with the MATCHES "ON" as well, but the
NUM function is more efficient than its"MATCHES" counterpart. This means that:

ALPHA(string) is better than MATCHES "0A™
and that
NUM (numeric.expression) is better than MATCHES "ON"

The moral of this story is. Use the MATCHES statement only for "composite" or complex pattern
matches, like dates or general ledger account numbers. Use the intrinsic functions, NUM and ALPHA,
on purely numeric or alphabetic data, respectively.

Note that some characters, notably the hyphen and period will "pass" as acceptable numeric charactersin
the NUM function but are not accepted with the MATCHES "ON" statement.

THE COUNT FUNCTION

The COUNT function is used to determine the number of occurrences of a character, or a string of
characters, within another string of characters. This example simply determines the number of spacesin
the string of characters that you entered, and reportsit on line 84:

079 NUMBER. OF. SPACES = COUNT(WORD. STRING " ")
For another example of the COUNT function, consider this example:
STRI NG = " ABC* DEF* GHI * JKL"

SEARCH. STRI NG = "*"
NUMBER. OF. STARS = COUNT(STRI NG SEARCH. STRI NG

Upon execution, the variable NUMBER.OF.STARS contains the number 3, since there are three
occurrences of the "*" (asterisk) in the variable STRING. This statement and its counterpart, the
DCOUNT statement, are particularly useful in PICK/BASIC, especially in situations when you need to
determine how many values appear in an attribute. The DCOUNT function is covered in Example 4.

Note that there is a potential problem when using COUNT or DCOUNT with overlapping strings. For
example:

COUNT("XXXXXXXXXX""XXX")
produces "8" asthe result, while
DCOUNT ("XXXXXXXXXX","XXX")

produces "9" as the result. This means that you must carefully make sure that you use DCOUNT only
with a single character a